• Title/Summary/Keyword: Automatic balancing

Search Result 60, Processing Time 0.025 seconds

The design and evaluation of automatic balancing equipment for the grinding machine (연삭기용 자동 밸런싱 장치의 설계 및 평가)

  • 장홍석;최대봉;황주호;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.309-314
    • /
    • 2001
  • The balance of high speed spindle system with high precision rotation like grinding machine is very important. Traditionally, we use trial and error method to balance the spindle. It takes much time. So we are developing the automatic balancing equipment being used in the grinding machine. The balancing head we develop is wireless. It will be used high-speed grinding machine. We use influence coefficient method to control the automatic balancer. Experiments are based on automatic and manual balancing. We perform test of the vibration filter. It helps to remove noise. The filter and experiments with automatic balancing controller show that automatic balancing control can be successfully achieved with the quick response and good stability characteristics.

  • PDF

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.

A Study on Balancing of High-speed Spindle of CNC Automatic Lathe (CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구)

  • Kim, Tae-Jong;Koo, Ja-Ham;Lee, Shi-Bok;Kim, Moon-Saeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

Gravity and Angular Velocity Profile Effects on the Balancing Performance of an Automatic Ball Balancer (자동볼평형장치의 밸런싱 성능에 대한 중력과 속도파형의 영향)

  • 정진태;정두한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.418-423
    • /
    • 2003
  • The balancing performance of an automatic ball balancer (ABB) in the vertical or horizontal position is studied in this paper. Considering the effects of gravity and angular velocity profiles, a physical model for an ABB installed on the Jeffcott rotor is adopted. The non-linear equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-u method. From the computed responses, the effects of gravity and angular velocity profiles on the balancing performance are investigated. It is found that the rotor with ABB can be balanced regardless of the gravity effect. It is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

  • PDF

Design Guidelines for the Automatic Ball Balancer in CD/DVD Systems with Varying Eccentricity (편심이 변하는 CD/DVD시스템의 자동 볼 평형장치 설계 지침)

  • 김보현;류제하
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.387-392
    • /
    • 1999
  • This paper presents design guidelines for the automatic ball balancer in CD/DVD systems with varying eccentricity. In these systems, the size of balancing balls should be limited by the restricted race space so that determination of the number and mass of balls should consider the radii of the race and the balls. In addition, the effects of viscosity and friction also should be taken into account for sufficient balancing. Based on the static equilibrium conditions, the number and mass of balls corresponding to the range of varying eccentricity have been determined. Dynamic simulation with viscosity and friction shows sufficient viscosity must exist to ensure stability and friction between balls and race must be minimized to guarantee accurate balancing.

  • PDF

Link balancing and identification for an unknown payload in an articulated robot (관절형 로보트에 있어서의 미지부하에 대한 링크의 균형화와 부하질량의 추정)

  • 임태균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.534-539
    • /
    • 1988
  • This paper presents a method to balance the links of an articulated robot for an unknown payload using an automatic balancing mechanism. The balancing masses are controlled to move in their appropriate locations so that the joint torques of the links are eliminated. After balancing the mass of the payload is obtained from the balancing conditions. Based upon a series of simulation studies some results are discussed.

  • PDF

Flow Characteristics of Pressure Balancing Valve with Various Piston Shapes (피스톤 형상변화에 따른 압력평형밸브의 유동특성연구)

  • Kim, Tae-An;An, Byeong-Jae;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2168-2173
    • /
    • 2003
  • Pressure balancing valve is one of important control devices, which is fully automatic and no manual controls, regulating or adjustments are needed. It is typically used to maintain constant temperature of working fluid in power and chemical plants and domestic water supply systems. Pressure balancing valve is composed of body, cylinder and balancing piston. Therefore, the balancing piston shapes are important design parameters for a pressure balancing valve. In this study, numerical and experimental analyses are carried out with two different balancing piston shapes. Especially, the distribution of static pressure is investigated to calculate the flow coefficient($C_v$). The governing equations are derived from making using of three-dimensional Navier-Stokes equations with standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using commercial code, PHOEIC, the pressure and flow fields in pressure balancing valve are depicted.

  • PDF

A study on the generation of balancing trajectory for biped robot using genetic algorithm (유전 알고리즘을 이용한 이족보행로봇의 균형 궤적 생성에 관한 연구)

  • Kim, Jong-Tae;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.969-976
    • /
    • 1999
  • This paper is concerned with the generation of a balancing trajectory for improving the walking performance. The balancing motion has been determined by solving a second -order differential equation. However, this method caused some difficulties in linearizing and approximating the equation and had restrictions on using various balancing trajectories. The proposed difficulties in linearizing and approximating the equation and had restrictions on using various balancing trajectories. The proposed method i this paper is based on the genetic algorithm for minimizing the motins of balancing joints, whose trajectories are generated by the fifth-order polynomial interpolation after planning leg trajectories. The real walking experiments are made on the biped robot IWR-III, developed by our Automatic Control Laboratory. The system has 8 degrees of freedom and the structure of three pitches in each leg, and one roll and one prismatic joint in the balancing joints. The experimental result shows the validity and applicability of the new proposed algorithm.

  • PDF

Control of balancing weight for IWR biped robot by genetic algorithm (유전 알고리즘을 이용한 IWR 이족 보행 로보트의 균형추 제어)

  • 심경흠;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1185-1188
    • /
    • 1996
  • In this paper we present a genetic approach for trajectory control algorithm of balancing weight for IWR biped walking robot. The biped walking robot, IWR that was made by Automatic Control Lab. of Inha University has a trunk which stabilizes its walking by generating compensation moment. Trunk is composed of a revolute and a prismatic joint which roles balancing weight. The motion of balancing weight is determined by the gait of legs and represented by two linear second order ordinary differential equations. The solution of this equation must satisfy some constraints simultaneously to have a physical meaning. Genetic algorithm search for this feasible motion of balancing weight under some constraints. Simulation results show that feasible motion of balancing weight can be obtained by genetic algorithm.

  • PDF

Control of a Biped Walking Robot using ZMP Formulation (균형점 정형화를 이용한 이족보행로봇 제어)

  • Lim, Sun-Ho;Kim, Jin-Geol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • This paper is concerned with the balancing motion formulation and the control of ZMP (zero moment point) for a biped walking robot with balancing joints. The balancing equation of a biped robot can be modeled as the second order non-homogeneous differential equation, which makes it possible to plan the desired trajectories for various gaits or motions. Also, the balancing motion can be defined easily by solving the differential equation without pre-processing or heuristic procedures. The actual experiments are performed on biped walking robot system IWR-III, developed in our Automatic Control Lab. The system has the structure of three pitches in each leg, and one roll and one prismatic type in balancing joints. The walking simulations and the experimental results on IWR-III are shown using the proposed formula and control algorithm.

  • PDF