• Title/Summary/Keyword: Automatic Water Sampling

Search Result 26, Processing Time 0.026 seconds

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.

Construction of the Automatic Water Quality Monitoring System for the Saemankeum (새만금해역 자동수질모니터링시스템 구축)

  • Kim, Won-Jang;Park, Sang-Hyun;Lee, Hyung-Joo;Lee, Kwang-Ya
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.441-444
    • /
    • 2002
  • In recent, industrialization increases the level of pollution load in sea areas, and the inflows of pollutants to public sea areas cause sudden and wide-range of influence to the water quality and the ecosystem. To prepare for these kinds of unpredictable water pollution issues, the necessity is emerging to build an automatic water quality monitoring system, which can monitor and alarm the water quality changes of the subject sea areas. For the ongoing installation plan of the automatic water quality monitoring system around the Saemankeum sea area, this report compares and analyzes its installation conditions as well as the physical and chemical characteristics of the in-situ type and the water-sampling type of the automatic water quality monitoring equipments, and subjects to provide elementary data for the system installation in the Saemankeum.

  • PDF

Quality Control to Improve Reliability of Automatic Water Quality Data (수질자동측정망 자료의 신뢰성 제고를 위한 정도관리)

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.338-344
    • /
    • 2010
  • The automatic water quality monitoring system (AWQMS) have been installed to immediately response to any pollution incident. It also make it possible to conduct the task efficiently regarding water quality control. The purpose of this study is to enhance reliability by securing accuracy of automatic water quality data through quality assessment (QA) for temperature, pH, dissolved oxygen (DO), electric conductivity (EC), total organic carbon (TOC). The result of comparison between manual and automatic data, relative accuracy of general items (temperature, pH, EC, DO) and TOC were mostly satisfied with guideline (i.e. less than 20%). On the other hand, relative accuracy of DO between sampling site and housing site was somewhat against the guideline. The contamination by attaching algae and microorganism in the pipeline is considered as main cause. After backwashing the pipeline, DO concentration was increased up to 53%. Therefore, pipeline management is recognizable as important thing to secure reliability of water quality data.

Development of a Time-selective Self-triggering Water Sampler and Its Application to In-situ Calibration of a Turbidity Sensor

  • Jin, Jae-Youll;Hwang, Keun-Choon;Park, Jin-Soon;Yum, Ki-Dai;Oh, Jae-Kyung
    • Journal of the korean society of oceanography
    • /
    • v.34 no.4
    • /
    • pp.200-206
    • /
    • 1999
  • Seawater sampling is the primary task for the study of the marine environmental parameters that require shipboard or laboratory experiments for their analyses, and is also required for the calibration of some instruments for in situ measurement. A new automatic bottle (AUTTLE) is developed for seawater sampling at any desired time and water depth by self-triggering. Both any type of single or assembled mooring for 15 days and manual actuation by using a remote messenger as existing instantaneous single point water samplers are possible. Its sampling capacity and the resolution of time setting are 2 liters and 1 second, respectively. The result of a field experiment with an optical backscattering sensor (OBS) and a total of 14 AUTTLES for the in situ calibration of the OBS shows that the AUTTLE must improve our understanding on the behavior of the sand/mud mixtures in the environments with high waves and strong tides. The AUTTLE will serve as a valuable instrument in the various fields of oceanography, especially where synchronized seawater sampling at several sites is required and/or the information in storm period is important.

  • PDF

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

A study on the autonomous control system for an unmanned surface vessel?

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.417-420
    • /
    • 2004
  • Recently, the applications of unmanned system are steadily increasing. Unmanned automatic system is suitable for routine mission such as reconnaissance, environment monitoring, resource conservation and investigation. Especially, for the ocean environment monitoring mission, many ocean engineers had scoped with the routine and even risky works. The automatic system can replace the periodic and routine missions: water sampling, temperature and salinity measuring, etc. In this paper, an unmanned surface vessel was designed for routine and periodic ocean environmental missions. An autonomous control system was designed and tested for the unmanned vessel. A GPS and gyro compass was used for navigation. A linear autopilot model for course control can be derived from the maneuvering model. Nomoto's 2nd-order response equation was derived. The design methodologies and performance of the surface vessel were illustrated and verified with this linearized equation of motion. A linear controller was designed and automatic route tracking performance was verified for yaw subsystem.

  • PDF

Field Application of Waterworks Automatic Meter Reading and Analysis of Household Water Use (상수도 원격검침시스템의 현장 적용성 평가 및 가정용수 사용량 분석)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuck;Ko, Kyung-Rok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.656-663
    • /
    • 2012
  • After the construction of waterworks automatic meter reading with 15 mm diameter digital water mater with magnetoresistance sensor developed in this study at 96 households of apartment complexes located in Incheon-City B-Gu S-Dong, the feasibility of field application of waterworks automatic meter reading was evaluated. The field application of waterworks automatic meter reading was performed from July to December in 2011, and average reception rate was as low as 84.6% due to the instable wibro networks, the existence of communication blackout and temporary malfunction of router. After the extraction of 10 households with one to five residents out of 96 households by using stratified random sampling method and analysis of domestic water use, it was found that domestic water use was significant at August and showed a decreasing trend at September, followed by increase in domestic water use at November and decrease in domestic water use at December. This phenomenon should be attributed to weather factors (temperature, humidity, etc.), which significantly affected domestic water use. Similar trend in domestic water use in terms of weather factors was obtained in case of Liter per capita day of water use after the extraction of 30 households out of 96 households by using stratified random sampling method. After analysis of Liter per capita day for 96 households, single residents increases resulted in reduction of domestic water usage by about 14% of Liter per capita day. These results might be due to the fact that domestic water usage such as laundry, beverages, catering, cleaning, etc. should be required for even the household with one resident, whereas domestic water usage for those common utilization can be significantly saved for the household with more than one resident.

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

Effects of Rain Water Sampler on the Results of Analysis (雨水採取機가 雨水成分에 미치는 影響)

  • 李敏熙;韓義正;辛燦基;韓振錫
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.53-61
    • /
    • 1987
  • Automatic and manual rain smaplers wre installed at the roof of National Institute of Environmental Research (NIER), and the rain sampling and measurement were conducted during the period April to August 31, 1987. The rain sampling and measurement were carried out in the following manners: The 1st : Acidity and conductivity were measured entirely by automatic rain sampler (continuous measurement) The 2nd : Acidity and conductivity wrer measured in the laboratory with the sample that was taken out of automatic rain sampler. The 3rd : Acidity and conductivity were measured in the laboratory with the sample that was taken out of manual rain sampler. Afterwards, those different measurement values were compared each other and the following conclusions were obtained: 1) The pH of the continous measurement by the automatic sampler was lower than that of the laboratory measurement, and it was reversed in case of the conductivity. 2) The significance was recognized at 5% risk ratio for the population mean of difference of the measurement values of the pH and conductivity from both samples. 3) The significance was not recognized at 5% risk ratio by the analysis of variance by one way layout for the pH and conductivity. 4) The significance was recognized at 5% risk ratio by the analysis of variance by two way layouts for the pH conductivity. 5) The significance was recognized at 5% rrisk ratio for the differences of the pH values obtained by oboth samplers, and no significance was recognized for conductivity. 6) In comparison of the measurement values from the two samplers were shown a good correlation for pH; correlation coefficient (r) = 0.63, and regression equation Y = 0.53X + 2.78. For conductivity, the correlation was also excellent; correlation coefficient (r) = 0.53 and regression equation Y = 0.63X + 5.65.

  • PDF

Sediment Discharge Based on a Time-Integrated Point Sample (연속점 채취를 이용한 유사량 계산)

  • 정관수
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.129-141
    • /
    • 1996
  • A procedure for computing total suspended sediment load is presented based on a single point-integrated sample, a power velocity distribution, and Laursen's sediment concentration distribution equation. The procedure was tested with field data from the Rio Grande River. Computed concentrations agreed well with depth-integrated measurements corrected for unmeasured load using nominal values of $\beta$, $\kappa$ and w. Even better agreement was obtained when site-specific data were used to define the x and z exponents of the velocity and concentration distributions. The difference between total suspended load computed using a single measurement and this procedure and conventional computations based on depthintegrated measurements is well within sampling error. There are major advantages in estimating total suspended load using a single time-integrated suspended-sediment point sample. Less field time is required; sampling costs are greatly reduced; and sampling can be more frequent and better timed to measure the changing sediment load. Single-point sampling makes automatic sampling procedures more feasible.

  • PDF