• 제목/요약/키워드: Automatic Machine Learning

검색결과 298건 처리시간 0.023초

무구속적 방법으로 측정된 심전도의 신뢰도 판별 (Quality Level Classification of ECG Measured using Non-Constraint Approach)

  • 김윤재;허정;박광석;김성완
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.161-167
    • /
    • 2016
  • Recent technological advances in sensor fabrication and bio-signal processing enabled non-constraint and non-intrusive measurement of human bio-signals. Especially, non-constraint measurement of ECG makes it available to estimate various human health parameters such as heart rate. Additionally, non-constraint ECG measurement of wheelchair user provides real-time health parameter information for emergency response. For accurate emergency response with low false alarm rate, it is necessary to discriminate quality levels of ECG measured using non-constraint approach. Health parameters acquired from low quality ECG results in inaccurate information. Thus, in this study, a machine learning based approach for three-class classification of ECG quality level is suggested. Three sensors are embedded in the back seat, chest belt, and handle of automatic wheelchair. For the two sensors embedded in back seat and chest belt, capacitively coupled electrodes were used. The accuracy of quality level classification was estimated using Monte Carlo cross validation. The proposed approach demonstrated accuracy of 94.01%, 95.57%, and 96.94% for each channel of three sensors. Furthermore, the implemented algorithm enables classification of user posture by detection of contacted electrodes. The accuracy for posture estimation was 94.57%. The proposed algorithm will contribute to non-constraint and robust estimation of health parameter of wheelchair users.

휴대전화에서 단문 메시지로부터 일정 자동 등록 (Automatically Registering Schedules from SMS Messages on Handheld Devices)

  • 김재훈;김형철
    • 인지과학
    • /
    • 제22권1호
    • /
    • pp.1-18
    • /
    • 2011
  • 휴대전화가 대중에게 널리 보급됨에 따라, 단문 서비스(SMS)가 새로운 의사소통 수단으로 등장하고 있다. 단문 서비스는 가격이 저렴할 뿐 아니라 단문 메시지를 쉽게 저장할 수 있어 약속이나 일정 알림용으로 널리 사용된다. 본 논문은 단문 메시지로부터 일정 정보(시간과 장소)를 추출하여 자동으로 일정 관리 시스템에 등록하는 시스템을 개발한다. 단문 메시지는 짧고 간결하지만 비속어나 준말 등이 많이 사용된다. 이것이 일정 정보를 추출하는데 더욱 어렵게 한다. 또한 휴대전화에는 계산 능력과 저장 공간이 충분하지 못하므로 형태소 분석과 같은 일반적인 자연언어 처리 모듈을 그대로 사용하는 것은 다소 무리가 있다. 이 문제를 해결하기 위해서 본 논문에서는 형태소 분석과 같이 복잡한 언어 처리 모듈을 사용하지 않고 기계학습 기반으로 일정 정보를 추출하고 추출된 정보를 휴대전화의 일정 관리 시스템에 등록한다. 본 논문에서 제안된 자동 일정 등록 시스템은 삼성전자 옴니아 휴대전화에 탑재되어 정상적으로 잘 동작함을 확인할 수 있었다.

  • PDF

인터넷 감정기호를 이용한 긍정/부정 말뭉치 구축 및 감정분류 자동화 (Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign)

  • 장경애;박상현;김우제
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.512-521
    • /
    • 2015
  • 네티즌은 인터넷을 통해서 상품을 구매하고 상품에 대한 감정을 긍정 혹은 부정으로 상품평에 표현한다. 상품평에 대한 분석은 잠재적 소비자뿐만 아니라 기업의 의사결정에 중요한 자료가 된다. 따라서 인터넷의 대량 리뷰에서 의미 있는 정보를 분석하여 의견을 도출하는 오피니언 마이닝 기술의 중요성이 증대되고 있다. 기존의 연구는 대부분이 영어를 기반으로 진행되었고 아직 한글에 대한 상품평 분석은 활발히 이루어 지지 않고 있다. 또한 한글은 영어와 달라 꾸미는 말과 어미가 복잡한 특성을 갖고 있다. 그리고 기존의 연구는 통계적 기법, 사전 기법, 기계학습 기법 등을 사용하여 연구되었으나 인터넷 언어의 특성을 감안하지는 못하였다. 본 연구에서는 감정이 포함된 인터넷 언어의 특성을 분석하여 감정분석의 정확률을 높이는 감정분류 방법을 제안한다. 이를 통해 데이터에 독립적인 인터넷 감정기호를 이용해서 자동으로 긍정 및 부정 상품평을 분류할 수 있었고 높은 정확률, 재현율, Coverage 결과를 통해서 제안 알고리즘의 유효성을 확인할 수 있었다.

머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법 (Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning)

  • 양승권;송택호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.157-163
    • /
    • 2019
  • 현재까지 피크완화 및 에너지 절감을 위해 한국전력공사 120여개 사옥에 K-BEMS (KEPCO Building Energy Management System)가 운영 중이다. 이 시스템은 PV, PCS, BESS, EMS 등으로 구성되어 있으며 건물에너지 수요예측을 기반으로 BESS, PV 등을 활용하여 에너지 관리를 도모하고 있다. 이 시스템은 단기 과거데이터에 신경망기법을 단순 적용하여 수요를 예측함에 따라 예측 정확도가 높지 않고 운영자 수작업을 통한 BESS 충방전으로 피크 저감이 곤란하며 운영 경제성 제고가 어려운 실정이다. 이러한 문제를 해결하기 위해 전력연구원에서는 2016년부터 3년간 연구과제를 수행하였는데 이를 통해 에러를 최소화하며 높은 신뢰도를 가지는 실시간 수요예측기법과 이에 기반한 BESS충방전 최적화 자동화 기술 개발, 성능을 검증하였기에 이를 본 논문에서 소개하고자 한다.

에너지 효율 향상을 위한 스마트팜 제어 시스템 (Smart Farm Control System for Improving Energy Efficiency)

  • 최민석
    • 디지털융복합연구
    • /
    • 제19권12호
    • /
    • pp.331-337
    • /
    • 2021
  • 정보통신기술과 융합된 스마트팜의 도입은 농업 분야의 생산성을 높이고 경쟁력을 강화하고 있다. 각종 센서를 통한 환경 모니터링과 이를 통한 재배 환경의 자동제어가 가능하며 원격제어를 지원하는 기술들이 개발되어 보급되었고, 스마트팜에서 생성된 데이터를 이용하여 스마트팜 기술의 고도화를 위한 연구들이 진행되고 있다. 본 논문에서는 스마트팜의 환경 및 제어 데이터를 이용하여 스마트팜의 에너지 소비를 줄이기 위한 환경 제어 방법을 제안한다. 누적된 환경 데이터를 이용하여 환경 예측 모델을 만들고, 다중 환경 요소를 고려하여 주어진 상황에서 에너지 소비를 최소화할 수 있는 제어 방식을 선택함으로써 독립적 환경 제어 방식과 비교해 에너지 사용량을 줄일 수 있음을 확인하였다. 향후 예측 모델의 고도화와 복합제어 알고리즘의 개선 통하여 더 높은 에너지 효율을 얻기 위한 연구가 필요할 것으로 보인다.

심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성 (Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation)

  • 조동희;남용욱;이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.

데이터 중심 통합생산시스템 설계 및 구현: 대형항공부품가공 사례 (Design and Implementation of Integrated Production System for Large Aviation Parts)

  • 배성문;배효진;홍금석;박철순
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.208-219
    • /
    • 2021
  • In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.

영상 추천 서비스의 개선을 위한 영상 미디어의 메타데이터 자동생성 방법에 대한 연구 (A Research on the Method of Automatic Metadata Generation of Video Media for Improvement of Video Recommendation Service)

  • 유연휘;박효경;용성중;문일영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.281-283
    • /
    • 2021
  • 국내 OTT(Over-the-top media service) 시장의 추천 서비스에서 거론되는 대표 업체는 Youtube와 Netflix이다. Youtube는 여러 방법을 거쳐 2016년부터 이용자의 시청 시간을 기록하여 이용하는 알고리즘을 머신러닝에 도입하면서 개인화된 추천을 본격화하였고, Netflix는 사용자의 선택한 영상, 시청 시간대, 영상 시청 기기 등 정보 수집을 통해 이용자를 분류하고 비슷한 시청 패턴을 가진 사람들을 같은 그룹에 묶는 방식과 영상을 직접 시청 후 사람이 태그(메타데이터)를 직접 기록하여 사용자로부터 수집한 정보와 영상에 붙은 태그 정보를 이용한다. 본 논문에서는 수기로 작성하던 영상 미디어의 메타데이터를 자동으로 생성하여 영상미디어의 추천을 개선하기 위한 방법을 제안하고자 한다.

  • PDF

문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구 (A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model)

  • 심재승;원하람;안현철
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.201-220
    • /
    • 2019
  • 가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.