• Title/Summary/Keyword: Automated guided vehicle

Search Result 156, Processing Time 0.026 seconds

A Navigation Control Algorithm for Automated Guided Vehicle Based on Neural Network Sensing Prediction (신경망 예측에 기반한 AGV의 주행 알고리듬)

  • 나용균;김선효;오세영;성학경;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.428-428
    • /
    • 2000
  • A robust intelligent algorithm for AGV navigation control is presented here based on both magnetic and gyro sensors to track a reference trajectory. Since the proposed system uses an intermittent array of short magnetic tape strips, it lends itself to a very easy installation and maintenance compared to other types of positioning references such as electric wire, magnets, RF and laser beacons. The neural network is to predict the lateral deviation of the AGV in the intervals where no magnetic tape references are available. Further, the use of intelligent control ensures a robust and flexible control performance. Computer simulation of AGV control demonstrates its adequate tracking performances even where the sensor information is not available. Real experiments using Samsung AGV are also on the way for real verification

  • PDF

A Study on the Path-tracking of an Automated Guided Vehicle Using Digital PD Controller (PD제어기를 이용한 AGV의 경로추종에 관한 연구)

  • Lee, Jong-Sung;Won, Young-Jin;Seong, Hong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1037-1038
    • /
    • 2006
  • This paper treats the guide path tracking problem of an experimental automated guided vehicle. An experimental guide path is made of aluminium foil which has width of 2[cm]. A digital Proportional and Derivative controller is used to manipulate the steering system and it is verified by laboratory experiments that the designed AGV tracks the guide path withen the range of 3.2[cm] deviation.

  • PDF

A Design of Two Degree of Freedom PID Controller for AGV using Immune Algorithm (면역 알고리즘을 이용한 AGV의 2자유도 PID조향 제어기 설계에 관한 연구)

  • 이창훈;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.229-234
    • /
    • 2002
  • Immune system is an evolutionary biological system to protect Innumerable foreign materials such as virus, germ cell, and et cetera. Immune algorithm is the modeling of this system'response that has adaptation and reliableness when disturbance occur. In this paper, immune algorithm controller was proposed to control four wheels steering(4ws) Automated Guided vehicle(AGV) in container yard. And then the simulation result was analysed and compared with the results of NN-PID controller.

  • PDF

A Study on the Decision Policy for the Waiting Position of an Idle Automated Guided Vehicle (자동 유도 운반차량의 대기위치 결정정책에 관한 연구)

  • Song, Sung-Hun;Choi, Hyung-Joo;Cho, Myeon-Sig
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.313-324
    • /
    • 1996
  • A new policy to determine the waiting position of an idle Automated Guided Vehicle(AGV) is proposed and its performance is compared with the existing waiting position policies. Unlike the existing policies, the queue length in the input buffer is considered in the new policy. As a result, the waiting position based on the new policy depends on the status of the system. The simulation result indicates that the proposed policy reduces the waiting time in both the input and the output buffers significantly, regardless of the number of AGVs in the system. Therefore, the manufacturing lead time can be minimized.

  • PDF

Dispatching rule of automated guided vehicle to minimize makespan under jobshop condtion (Jobshop환경에서 총처리시간을 최소화하기 위한 AGV의 할당규칙)

  • Choi, Jung-Sang;Kang, In-Seon;Park, Chan-Woong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.62
    • /
    • pp.97-109
    • /
    • 2001
  • This research is concerned with jobshop scheduling problem for an advanced manufacturing system like flexible manufacturing which consists of two machine centers and a single automated guided vehicle(AGV). The objective is to develop and evaluate heuristic scheduling procedures that minimize makespan to be included travel time of AGV. A new heuristic algorithm is proposed and illustrates the proposed algorithm. The heuristic algorithm is implemented for various cases by SLAM II. The results show that the proposed algorithm provides better solutions in reduction ratio and frequency than the previous algorithm.

  • PDF

Position and Orientation Estimation of a Maneticalluy Guided-Articulated Vehicle (자기적 안내제어시스템을 이용하는 굴절차량의 위치 및 방위각 추정)

  • Yun, Kyong-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1915-1923
    • /
    • 2011
  • For automated guidance control of a magnetically guided-all wheel steered vehicle, it is necessary to have information about position and orientation of the vehicle, and deviations from the reference path in real time. The magnet reference system considered here consists of three magnetic sensors mounted on the vehicle and magnetic markers, which are non-equidistantly buried in the road. This paper presents an observer to estimate such position and orientation at the center of gravity of the vehicle. This algorithm is based on the simple kinematic model of vehicle and uses the data of wheel velocity, steering angle, and the discrete measurements of marker positions. Since this algorithm requires the exact values of initial states, we have also proposed an algorithm of determining the initial position and orientation from the 16 successive magnet pole data, which are given by the magnetic measurement system(MMS). The proposed algorithm is capable of continuing to estimate for the case that the magnetic sensor fail to measure up to three successive magnets. It is shown through experimental data that the proposed algorithm works well within permissible error range.

A Dispatching Method for Automated Guided Vehicles to Minimize Delays of Containership Operations

  • Kim, Kap-Hwan;Bae, Jong-Wook
    • Management Science and Financial Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-25
    • /
    • 1999
  • There is a worldwide trend to automate the handling operations in port container terminals in an effort to improve productivity and reduce labor cost. This study iscusses how to apply an AGV(automated guided vehicle) system to the handling of containers in the yard of a port container ter-minal. The main issue of this paper is how to assign tasks of container delivery to AGVs during ship operations in an automated port container terminal. A dual-cycle operation is assumed in which the loading and the discharging operation can be performed alternately. Mixed integer linear program-ming formulations are suggested for the dispatching problem. The completion time of all the dis-charging and loading operations by a quayside crane is minimized, and the minimization of the total travel time of AGVs is also considered as a secondary objective. A heuristic method using useful properties of the dispatching problem is suggested to reduce the computational time. The perfor-mance of the heuristic algorithm is evaluated in light of solution quality and computation time.

  • PDF

A Study of the Obstacle Detection System Using Virtual Bumper(1) (Virtual Bumper를 이용한 장애물감지에 관한 연구(I))

  • 최성락;김선호;박경택;유득신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.315-320
    • /
    • 1999
  • Obstacle Detection System(ODS) is a essential system for automated vehicle, such as AGV(Automatic Guided Vehicle), mobile robot. Automated vehicle must have a capability to detect and to avoid obstacles to guarantee a safe driving condition. To implement obstacle detection system, virtual bumper concept adapted. Like real bumper in a car, such as in the truck, it protects vehicle from collision using laser distance sensor. When an obstacle(such as other vehicle, building, etc) intrudes this virtual bumper area, a virtual force is calculated and produces necessary strategy to be able to avoid collision. In this paper, simplified virtual bumper concept is presented, and various problems when happens to implement are discussed.

  • PDF

Automatic Guided Vehicle Design and Implementation for Intelligent Unmanned Mobile systems (지능형 무인 이동 시스템을 위한 Automatic Guided Vehicle 설계 및 구현)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2014
  • In this study, the unmanned vehicle to develop a preliminary step, we were facilities for Automated Guided Vehicle (AGV) simulator is designed and implemented. Industry is increasingly the more advanced automation and management systems need to be efficient. These studies are at least 24-hour continuous unmanned vehicles and personnel can result in reduction of labor costs. In addition, safety accidents can be minimized in the industry as an effect of intelligent AGV is essential. This study is the initial step for the development of AGV. manufactured simulator to Simulation and drives the performance of the system is evaluated. The configuration of the simulator, ultrasonic sensors, infrared sensors, and using the obstacle were to follow a given path. In addition, two-way communication between the host computer and the main processor that was. communication method that IEE802.11 meets the standard is applied to high-speed wireless LAN systems, each of the sensor information is calculated. AGV having a drive shaft 4 of the four wheels are respectively independent structure. AGV's main processor is driven using a high-performance DSP, and the controller controls the steering device of the load could be significantly reduced.

Collision Avoidance and Deadlock Resolution for AGVs in an Automated Container Terminal (자동화 컨테이너 터미널에서의 AGV 충돌 방지 및 교착 해결 방안)

  • Kang, Jae-Ho;Choi, Lee;Kang, Byoung-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.25-43
    • /
    • 2005
  • In modern automated container terminals, automated guided vehicle (AGV) systems are considered a viable option for the horizontal tansportation of containers between the stacking yard and the quayside cranes. AGVs in a container terminal move rather freely and do not follow fixed guide paths. For an efficient operation of such AGVs, however, a sophisticated traffic management system is required. Although the flexible routing scheme allows us to find the shortest possible routes for each of the AGVs, it may incur many coincidental encounters and path intersections of the AGVs, leading to collisions or deadlocks. However, the computational cost of perfect prediction and avoidance of deadlocks is prohibitively expensive for a real time application. In this paper, we propose a traffic control method that predicts and avoids some simple, but at the same time the most frequently occurring, cases of deadlocks between two AGVs. More complicated deadlock situations are not predicted ahead of time but detected and resolved after they occur. Our method is computationally cheap and readily applicable to real time applications. The efficiency and effectiveness of our proposed methods have been validated by simulation.

  • PDF