• 제목/요약/키워드: Automated Vehicles

검색결과 243건 처리시간 0.026초

군집주행 환경에서 비자율차의 차로변경행태 분석 (Lane Change Behavior of Manual Vehicles in Automated Vehicle Platooning Environments)

  • 이설영;오철
    • 대한교통학회지
    • /
    • 제35권4호
    • /
    • pp.332-347
    • /
    • 2017
  • 자율주행기술이 교통류에 미치는 영향을 분석하기 위해서는 자율차와 비자율차 간의 상호작용을 분석하는 것이 중요한 이슈이다. 특히 자율주행기술을 활용한 유용한 서비스 중의 하나인 군집주행은 주변의 비자율 차량의 주행행태에 영향을 미칠 수 있다. 본 연구의 목적은 군집주행 환경에서 비자율차의 차로변경행태 분석하는 것이며, 3단계의 실험 및 조사를 수행하였다. 1단계 영상기반 인지특성 분석을 통해 군집주행 환경에서 어떠한 반응행태를 보일 것인지를 조사하였으며, 2단계 주행시뮬레이션 실험을 통해 비자율차의 차로변경행태를 분석하였다. 차로변경행태를 분석하기 위해 차로변경시간과 교통류의 안전성을 나타낼 수 있는 지표인 가속소음을 이용하였으며, 자율차의 시스템 보급률(Market Penetration Rate, MPR)과 피실험자 인적요소에 따른 비자율차의 주행행태 차이를 비교 분석하였다. 마지막 단계인 NASA-TLX(NASA Task Load Index)를 통해 비자율차 운전자의 작업부하를 평가하였다. 분석결과 군집차량군 주변의 비자율차 운전자는 심리적인 부담감을 느끼며, MPR이 증가할수록 차로변경시간이 길어지고 30-40대 운전자 또는 여성 운전자의 경우 안전성이 낮아지는 것으로 나타났다. 본 연구에서 도출된 결과는 자율차와 비자율차의 상호작용을 반영한 보다 현실성 높은 교통시뮬레이션 실험 시 기초자료로 활용될 수 있고, 이를 기반으로 자율협력주행 환경에서 적용 가능한 교통운영관리전략 수립을 효과적으로 지원할 것으로 기대된다.

레벨 3 자율주행차량의 인적요인 가이드라인 연구 동향 (A Study on Human Factors Guidelines for Level 3 Automated Vehicles)

  • 김현숙;권오천;이승준;김정숙;김우진;윤대섭;이인환
    • 전자통신동향분석
    • /
    • 제35권6호
    • /
    • pp.24-36
    • /
    • 2020
  • To solve social problems such as traffic accidents caused by human driver factors and to guarantee the convenience of movement, research on the commercialization of automated vehicles is being actively conducted worldwide. In automated driving levels 2 and 3, the driver must be ready to drive at any time as the automated driving system sometimes requires manual driving by the driver. The purpose of this research is to analyze the trends in global automated vehicle guidelines and prepare guidelines for the characteristics of human factors necessary for the control rights transition system of automated vehicles. To this end, we reviewed at the guidelines for automated vehicles in the US, Germany, and Japan; ISO international standards; domestic automated vehicle standards; and the EU AdaptiVe project. In addition, a guideline is presented that can be referenced and applied by organizations related to automated vehicle manufacturing and operation. It was developed by utilizing the results of our studies on the human factors affecting the guideline of control rights transition. As national laws and regulations and continuous technology development for commercialization of automated vehicles are in progress, further research into and the revision of guidelines for safe automated vehicle production and use should be continued.

자율주행자동차 도입으로 인한 교통흐름 변화 분석 (Impacts of Automated Vehicles on Traffic Flow Changes)

  • 정승원;문영준;이성렬;황기연
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.244-257
    • /
    • 2017
  • 교통혼잡은 운전자의 인지반응시간, 운전미숙, 무리한 차로변경 등 인적요인으로부터 발생된다. 자율주행자동차가 도입되면 이러한 인적요인들이 배제되고 군집주행으로 인해 평균주행속도 상승, 교통흐름 안정화, 도로용량 증대 효과가 예상된다. 본 연구는 자율주행자동차도입으로 인한 교통흐름 변화를 교통량-밀도-속도 산포도 그래프를 통해 분석하고, 도로용량 증대 효과를 도출하였다. 분석 결과, 자율주행자동차의 혼입율이 높아질수록 교통량-밀도-속도의 그래프 곡선이 완화되며, 폭이 줄어들어 교통류가 안정적으로 변화하였다. 또한 자율주행자동차 혼입율 100%에서는 도로용량이 약 120% 증대되는 것으로 분석되었다. 자율주행자동차 도입으로 인한 교통혼잡개선 및 교통수요관리 측면에서 긍정적인 기대효과가 있을 것으로 분석되었다.

자율주행자동차 데이터 기록장치의 기록 조건 및 항목에 대한 방향성 연구 (A Study on the Direction of Data Triggers and Elements for Automated Vehicle Data Recorder)

  • 강희진;우나은;박기옥;송지현
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.71-78
    • /
    • 2023
  • This study presents the direction of data triggers and elements to be recorded in automated vehicles in the future in relation to the event data recorder (EDR) and data storage system for automated driving (DSSAD). It does not distinguish between the EDR and DSSAD, but suggests data triggers and elements in preparation for overall automated vehicle accidents and dangerous situations. To propose, the current status of discussions on EDR/DSSAD internationally and the case of investigating accidents with automated vehicles under temporary driving licenses in Korea were analyzed. Based on the analysis, the direction of data triggers and elements of the EDR/DSSAD of automated vehicles were presented.

자율주행 안전성 평가 시나리오 개발 및 검증 (Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle)

  • 채흥석;정용환;이명수;신재곤;이경수
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.6-12
    • /
    • 2017
  • Regulation for the testing and operation of automated vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for automated vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for automated vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of automated vehicles on highways. A total of seven scenarios are selected in consideration of safety priority and real traffic situation. Six scenarios are relevant with lane keeping and one scenario is relevant with lane change. All scenarios are developed based on existing ADAS evaluation scenarios and repeated simulation of automated vehicle algorithm. Safety evaluation factors as well as scenarios are developed. The safety factors are based on existing ADAS ISO requirements, ADAS safety factors and current traffic regulations. For the scenarios, a hunter vehicle is needed in addition to automated vehicle evaluated. The hunter vehicle performs multiple roles like preceding vehicle, cut-in vehicle and so on. The hunter vehicle is also automated vehicle equipped with high performance GPS, radar and Lidar. All the scenarios can be implemented by driving a lap on a KATRI ITS test track. These scenarios and safety evaluation factors are investigated via both a computer simulation and an experimental vehicle test on the test track. The experimental vehicle test was conducted with two automated vehicles, which are the evaluated vehicle and the hunter vehicle.

센서 범위를 고려한 자율주행자동차 교차로 충돌 상황 시뮬레이션 (Intersection Collision Situation Simulation of Automated Vehicle Considering Sensor Range)

  • 이장우;이명수;정재일
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.114-122
    • /
    • 2021
  • In this paper, an automated vehicle intersection collision accident was analyzed through simulation. Recently, the more automated vehicles are distributed, the more accidents related to automated vehicles occur. Accidents may show different trends depending on the sensor characteristics of the automated vehicle and the performance of the accident prevention system. Based on NASS-CDS (National Automotive Sampling System-Crashworthiness Data System) and TAAS (Traffic Accident Analysis System), four scenarios are derived and simulations are performed. Automated vehicles are applied with a virtual system consisting of an autonomous emergency braking system and algorithms that predict the route and avoid collisions. The simulations are conducted by changing the sensor angle, vehicle speed, the range of the sensor and vehicle speed range. A range of variables considered vehicle collision were derived from the simulation.

Locating Idle Vehicles in Tandem-Loop Automated Guided Vehicle Systems to Minimize the Maximum Response Time

  • Lee, Shiwoo
    • Industrial Engineering and Management Systems
    • /
    • 제6권2호
    • /
    • pp.125-135
    • /
    • 2007
  • An automated guided vehicle (AGV) system is a group of collaborating unmanned vehicles which is commonly used for transporting materials within manufacturing, warehousing, or distribution systems. The performance of an AGV system depends on the dispatching rules used to assign vehicles to pickup requests, the vehicle routing protocols, and the home location of idle vehicles, which are called dwell points. In manufacturing and distribution environments which emphasize just-in-time principles, performance measures for material handling are based on response times for pickup requests and equipment utilization. In an AGV system, the response time for a pickup request is the time that it takes for the vehicle to travel from its dwell point to the pickup station. In this article, an exact dynamic programming algorithm for selecting dwell points in a tandem-loop multiple-vehicle AGV system is presented. The objective of the model is to minimize the maximum response time for all pickup requests in a given shift. The recursive algorithm considers time restrictions on the availability of vehicles during the shift.

CIM 시스템에서 기계가공과 AGV 의 운영을 위한 동적 작업배정 알고리듬 (A Dynamic Dispatching Algorithm for Operation of Automated Guided Vehicles and Machines in CIM Systems)

  • 김정욱;이종태
    • 대한산업공학회지
    • /
    • 제21권1호
    • /
    • pp.85-101
    • /
    • 1995
  • Automated Guided Vehicles(AGVs) are widely used in computer integrated manufacturing(CIM) systems for material handling purposes. Although automated guided vehicles provide higher levels of flexibility and computer integrability, the installations are limited in number and one of the critical reasons lies in the complexity involved in the operation. The main objective of this research is to alleviate this problem by proposing efficient integrated operational control methods for AGV-based CIM systems. Particularly, this research is concerned with the mixed problem of dispatching automated guided vehicles and scheduling machines operation. The proposed dynamic heuristic algorithm uses various priority schemes and relevant information concerning the load of the system, the status of queues, and the position of AGVs in the scheduling process. The scheduling decision process is hierarchical in the sense that different decision criteria are applied sequentially to identify the most appropriate part to be served. This algorithm consists of two sections, the section of part selection by AGVs for the next service whenever an AGV completes the current assignment, and the section of part selection by machines for next service whenever a machine completes the current operation. The proposed algorithm has been compared with other scheduling schemes using the performance measure of mean flow-time and mean tardiness. Simulation results indicate that the proposed algorithm can reduce the mean flow-time and mean tardiness significantly.

  • PDF

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

첨단자동차의 전자파 내성 실험 환경에 관한 연구: 카메라 센서를 중심으로 (Electromagnetic Immunity Test Environments of Advanced Vehicles with Camera Sensor Systems)

  • 우현구
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.7-12
    • /
    • 2020
  • Recently, automobile industries have developed ADAS, smart cars, connected cars, automated driving systems, which use a variety of sensor systems - ultrasonics, cameras, lidars and radars - and communication systems. It is necessary to examine the electromagnetic immunity of vehicles equipped with the sensor systems due to the fact that the normal operation of those systems is very important to the safety of the vehicles. The electromagnetic immunity tests are carried out in an electromagnetic semi anechoic chamber, which is cut off from the outside. It is difficult to create test environments in which the camera sensor systems of vehicles work properly in the test chamber. In this study, test jigs were designed and tested and as a result they are shown to be effective to create test environments for electromagnetic immunity tests of vehicles equipped with camera sensors. We also proposed additional safety standards for immunity tests of vehicles with camera systems that currently do not exist.