• Title/Summary/Keyword: Automated Manufacturing

Search Result 488, Processing Time 0.021 seconds

A Study on the Structure Analysis of Riveting Process for Aircraft Frame Manufacturing (항공기 프레임 제작을 위한 리벳팅 공정의 구조해석에 관한 연구)

  • Lee, Choon-Man;Oh, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Riveting is mainly used to assemble the aircraft fuselage. An average of 2~3 workers is needed to assemble an aircraft fuselage consisting of various size frames by riveting. In this study, a riveting process that enables one-person operation using an automated C-frame riveting machine was proposed for improving the efficiency of productivity. The proposed process was verified stability through structural analysis. In the range that can maintain structural stability, panel thickness of the riveting machine and shape were modified to optimizing the shape for reducing the weight of the riveting process. The structural analysis was performed by software ANSYS workbench 19.2. The optimized riveting machine was reduced by 257kg compared to the existing model.

Development of A Flexible-Intelligent Equipment Server using Virtual Simulator

  • 박상민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.74-77
    • /
    • 1998
  • This paper presents a real design and implementation of an intelligent client-server equipment controller in computer-integrated manufacturing systems. An automated manufacturing process is commonly controlled by a number of PLC (Programmable Logic Controllers), which are attached to various equipments. A manufacturing cell consists of a set of equipments or workstation, which are also controlled by equipment or cell controller. We propose an intelligent equipment controller which has two function: one is to request (collect) an important information from each equipment and the other is to send the collected equipment information to the upper level controller (shop floor controller). Two-phase approaches are considered for the development of equipment client-server controller. The first events are generated virtually using computer simulation. Using the virtually generated activities, operating software of equipment server is developed. The second phase is to embed the virtually developed software (controller) into a real manufacturing system. The proposed methodology might be a novel design and implementation of a virtual simulator, which could be used for developing an intelligent equipment server.

  • PDF

A Study on the Material Supply Man-Hour Computation based on MODAPTS in Automobile Assembly Line (MODAPTS 기반 자동차 조립공정 부품공급 공수 산정에 관한 연구)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Quan, Yu;Jho, Yong-Chul;Kim, Yu-Seong;Bae, Sang-Don;Kang, Du-Seok;Lee, Jae-Woong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.127-135
    • /
    • 2016
  • Korean automobile industrial is in a difficult situation because of more competitive global market and lower demand. Therefore, domestic as well as global automobile manufacturers are making greater efforts in cost reduction to strengthen the competitiveness. According to statistical data, logistics cost in domestic manufacturers is higher than advanced countries. In this study, we developed program to effectively manage standard time of procurement logistics, and confirm based on A-automobile factory data. For the purpose, we develop the system which is possible to manage standard time as well as calculate man-hour. Program is not just for calculating and managing standard man-hour, scenarios analysis function will be added to calculate benefit while introduce logistics automated equipment. In this study we propose scenario using AGV instead of electric motor while move component. In the scenario analysis, job constitution is changed, and then we use system to compare the result. We can confirm standard man-hour is reduced from 22.3M/H to 14.3M/H. In future research, it is necessary scenario analysis function, and develop algorithm with realistic constraint condition.

A Simulation Study on the Application of Cellular Manufacturing System in the Automated Welding Line Producing Excavator-parts (굴삭기 부품 용접 자동화라인의 셀생산방식 적용을 위한 시뮬레이션 연구)

  • Kim, Hye Jeong;Lee, Seung Woo;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Mixed model production system means that various products are manufactured alternately in a line, and it has become a popular system in the era of multi-product small-quantity production. However, in the mixed model production system using flow line, the unbalance among stations is not inevitable because the workloads of stations cannot be the same. Thus, flow line system has been replaced to cellular manufacturing system for reducing the loss of waiting due to the unbalance of stations. In this paper, we introduce the simulation case study of an automated welding line which produces the parts of excavator. The factory has considered replacing the mixed model flow line to the cellular manufacturing system based on FMC concept. The increase of production quantity is estimated about 26.7%, and the lead time is reduced more than 55%. Furthermore sensitivity analyses are conducted considering the changes of product-mix.

The Implementation of BPEL based Workflow Management System in Manufacturing System Automation (제조시스템자동화에 있어서 BPEL 기반 워크플로우 관리시스템의 적용)

  • Park, Dong-Jin;Jang, Jae-Jin;Jang, Byoung-Hoon;Kim, Soo-Kyoung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.270-276
    • /
    • 2009
  • This paper outlines opportunities and challenges in the Implementation of BPEL based WFMS(Work Flow Management System) for the MES(Manufacturing Execution Systems) level in semiconductor manufacturing. At present, the most MES that are composed of several hundreds of applications in semiconductor wafer fabrication shop have the same problems as others about flexibility and adaptability. When a plant has to produce new product mix, remodel the manufacturing execution process, or replace obsolete equipments, the principal road blocks for responding to new manufacturing environment are inflexible communication infrastructure among the manufacturing process components and the difficulty in porting existing application software to new configurations. In this paper, the issues about BPEL standard, used for the flexibility of Workflow Management System, are presented. We introduce the integrated development framework named nanoFlow which is optimized for developing the BPEL based WFMS application for automated manufacturing system. We describe a WFMS implemented with using nanoFlow framework, review and evaluate the system in terms of flexibility and adaptability.

  • PDF

Development of Automated Non-contact Thickness Measurement Machine using a Laser Sensor (레이저센서를 이용한 비접촉식 두께자동측정기 개발)

  • Cho, Kyung-Chul;Kim, Soo-Youn;Shin, Ki-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2015
  • In this study, we developed an automated non-contact thickness measurement machine that continuously and precisely measures the thickness and warp of a PCB product using a laser sensor. The system contains a measurement part to measure the thickness in real time automatically according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The measurement machine was utilized to evaluate the performance at each step to minimize measurement error. At the zero setting for the initial setup, the standard deviation of the 216 samples was determined to be $5.52{\mu}m$. A measurement error of 0.5mm and 1.0mm as a standard sample in the measurement accuracy assessment was found to be 2.48% and 2.28%, respectively. In the factory acceptance test, the standard deviation of 1.461mm PCB was measured as $28.99{\mu}m$, with a $C_{pk}$ of 1.2. The automatic thickness measurement machine developed in this study can contribute to productivity and quality improvement in the mass production process.

Ergonomic Interventions to Control Work-related Musculoskeletal Disorders in Automated Light Assembly Manufacturing System (소형 부품 자동화 조립시스템의 근골격계질환 예방을 위한 인간공학적 개선안 연구)

  • Rah, Chong-Kwan;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.57-63
    • /
    • 2005
  • Ergonomic intervention techniques were adopted to assess and control potential risk factors of work-related musculoskeletal disorders(WMSDs) in the automated light assembly manufacturing system. Ten different kinds of assembly workstations implemented with a conveyor system and twelve female workers were observed and evaluated with careful video film analysis. Several close examinations using sets of checklists established by qualified safety and health organizations, such as NIOSH, OSHA, and ANSI, were conducted and every workers and staffs in the site participated in the self-report questionnaires and off-line interviews. Typical risk factors and symptoms of the upper extremity musculoskeletal disorders were found and categorized into specific parts of body. To reduce risk factors of WMSDs and improve system productivity new revised workstation standards, physical dimensions, were suggested accordant with anthropometric characteristics of workers and a heuristic decision strategy of rotating shift work schedules according to work contents has proposed to mitigate cumulative physical stress. Finally, ergonomic programs of entire company to prevent WMSDs were structured.

CAD Based Robot Off-line Programming for Shoe Adhesive Application System (신발 접착제 도포 시스템을 위한 CAD 기반 로봇 오프라인 프로그래밍)

  • 윤중선;차동혁;김진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.643-648
    • /
    • 2004
  • Most of shoes manufacturing processes are not yet automated, which puts restrictions on the increase of productivity. Among them, adhesive application processes particularly are holding the most workers and working hours. In addition, its working conditions are very poor due to the toxicity of adhesive agents. In case of automating adhesive application processes by using robots, the robot teaching by playback is difficult to produce high productivity because the kinds of shoes to be taught mount up to several thousands. Therefore, it is essential to generate the robot working paths automatically according to the kind, the size, and the right and left of shoes, and also to teach them to the robot automatically. This study deals with automated adhesive spraying to shoe outsoles and uppers by using a robot, and develops the program to generate three-dimensional robot working paths off-line based on CAD data. First, the three-dimensional data of an outsole outline or an upper profiling line are extracted from the two-dimensional CAD drawing file or the three-dimensional scanner. Next, based on the extracted data and the nozzle conditions for adhesive spraying, a robot working path is generated automatically. This research work is the core in automating adhesive spraying processes, and will do much for increasing productivity of shoes manufacturing.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

Design for Automation System for Pharmaceutical Prescription Using Arduino and Optical Character Recognition

  • Lim, Myung-Jae;Jung, Dong-Kun;Kim, Kyu-Dong;Kwon, Young-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.66-71
    • /
    • 2021
  • Recent healthcare environments have characteristics of expanding the scope of healthcare-impacting healthcare, complexity resulting from diversification of components, and accelerating the pace of change. Drugs are used for the prevention, mitigation, and treatment of diseases, so they can inevitably cause harm, while they have efficacy and effectiveness, which are key elements of health recovery. Therefore, many countries regulate permits for safe and effective medicines, and also designate essential drugs directly related to life as pay targets and guarantee health insurance. Especially Pharmacist relying on manpower for composition medicine is liable for mal-manufacture due to combination of toxic medical substances or other chemical usage. In this paper, we focus on using Kiosk and Optical Character Recognition (OCR) for automated pharmacy to level up medical service and create labor friendly environment for pharmacist themselves through maintenance of prescription data and automated manufacturing solution. Presentation of drug substances and precautions will lead to efficient drug prescription and prevent misuse of information while auto manufacturing system efficiently maintain labor force and raise patient satisfaction level by reduction of waiting time.