• Title/Summary/Keyword: Automated Manual Transmission (AMT)

Search Result 15, Processing Time 0.023 seconds

Design of Auto Shifting Logic and Shifting Map for AMT (자동화 수동변속기용 자동변속로직 및 변속맵 설계)

  • Im, Jin-Kang;Lee, Dong-Kun;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.670-671
    • /
    • 2016
  • AMT(Automated Manual Transmission) is manual transmission that can shift gear automatically by actuator. AMT is applied many commercial vehicles, for easy to operate and high fuel efficiency. 12-Steps AMT that is applied heavy duty commercial vehicle determine gear shifting point by using shifting map and auto shifting logic like other common auto transmissions. But shifting 1-step like common auto transmissions makes shifting crush, clutch abrasion, decrease fuel efficiency problems. In this paper, it deals with design of shifting map and auto shifting logic for 12-step AMT and result of performance test.

  • PDF

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

Design and Control of Clutch-by-wire System for Automated Manual Transmissions

  • Hwang, Sung-Ho;Kim, Hyun-Soo;Moon, Sang-Eun;Han, Kwan-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.372-376
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. In this paper, an electro-mechanical actuator for clutch-by-wire (CBW) system is implemented as the first stage for the development of automated manual transmissions. The prototype of CBW actuator is designed systematically, which is composed of the electric motor, worm & worm wheel and crank mechanism. And the test rig is developed to perform the basic function test for the automatic clutch actuation. The developed prototype is validated by the experimental results on the test rig.

  • PDF

DEVELOPMENT OF AUTOMATIC CLUTCH ACTUATOR FOR AUTOMATED MANUAL TRANSMISSIONS

  • MOON S. E.;KIM H. S.;HWANG S. H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.461-466
    • /
    • 2005
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train has gained importance in vehicles. The automatic clutch actuation relieves a driver especially in urban and stop-and-go traffic environments. In this paper, an electro-mechanical actuator for clutch-by-wire (CBW) system is implemented as the first stage for the development of automated manual transmissions. The prototype of the automatic clutch actuator is designed systematically, which is composed of the electric motor, worm and worm wheel, and crank mechanism. A test rig is developed to perform the basic function test for the automatic clutch actuation. The developed prototype is validated by the experimental results performed on the test rig.

Development of Electric Actuator Position Control System for Automatic Shuttle Shifting of Tractor (트랙터의 전후진 자동 변속을 위한 전자식 액추에이터의 위치 제어 시스템 개발)

  • Choi, Chang-Hyun;Woo, Mi-Na;Lee, Dae-Hyun;Kim, Yong-Joo;Jeong, Jin-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • The purpose of this study was to develop position control system of an electric actuator for automatic shuttle shifting of a tractor. The electric actuator was installed at the link of the forward-reverse gearshift of the tractor transmission, and controlled in the ranges of forward, neutral, and reverse positions. The position control system of the electric actuator was developed based on PID (Proportional Integral Derivative) controller and transfer function of the electric actuator. The coefficients of the PID controller were determined by Ziegler-Nichols (Z-N) method and optimized using simulation program. The prototype AMT (Automated Manual Transmission) test unit of the tractor was installed and used to evaluate the performance of the position control. The evaluation system for the control performance consisted of forward-reverse actuator, motor driver, and controller. The tests were conducted as the controlled positions of the actuator were changed from neutral position to forward, neutral, and reverse positions in sequence. The sequential tests were repeated 20 times. The operations of changing the gearshift were considered as the step response of the control system. Maximum overshoot, settling time, and steady-state error were analyzed. The results showed that performance of the position control system was reasonable and qualified. The maximum overshoots, the steady-state errors, and the settling times of the position control system were 10~20%, 1~5%, and 0.92~1.49 sec, respectively. The modifications of the electric actuator will be required to enhance the performance of position control during field operation.