• Title/Summary/Keyword: Automated Driving

Search Result 216, Processing Time 0.028 seconds

A Study on the Compression and Major Pattern Extraction Method of Origin-Destination Data with Principal Component Analysis (주성분분석을 이용한 기종점 데이터의 압축 및 주요 패턴 도출에 관한 연구)

  • Kim, Jeongyun;Tak, Sehyun;Yoon, Jinwon;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.81-99
    • /
    • 2020
  • Origin-destination data have been collected and utilized for demand analysis and service design in various fields such as public transportation and traffic operation. As the utilization of big data becomes important, there are increasing needs to store raw origin-destination data for big data analysis. However, it is not practical to store and analyze the raw data for a long period of time since the size of the data increases by the power of the number of the collection points. To overcome this storage limitation and long-period pattern analysis, this study proposes a methodology for compression and origin-destination data analysis with the compressed data. The proposed methodology is applied to public transit data of Sejong and Seoul. We first measure the reconstruction error and the data size for each truncated matrix. Then, to determine a range of principal components for removing random data, we measure the level of the regularity based on covariance coefficients of the demand data reconstructed with each range of principal components. Based on the distribution of the covariance coefficients, we found the range of principal components that covers the regular demand. The ranges are determined as 1~60 and 1~80 for Sejong and Seoul respectively.

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.

Design of Algorithm for Collision Avoidance with VRU Using V2X Information (V2X 정보를 활용한 VRU 충돌 회피 알고리즘 개발)

  • Jang, Seono;Lee, Sangyeop;Park, Kihong;Shin, Jaekon;Eom, Sungwook;Cho, Sungwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.240-257
    • /
    • 2022
  • Autonomous vehicles use various local sensors such as camera, radar, and lidar to perceive the surrounding environment. However, it is difficult to predict the movement of vulnerable road users using only local sensors that are subject to limits in cognitive range. This is true especially when these users are blocked from view by obstacles. Hence, this paper developed an algorithm for collision avoidance with VRU using V2X information. The main purpose of this collision avoidance system is to overcome the limitations of the local sensors. The algorithm first evaluates the risk of collision, based on the current driving condition and the V2X information of the VRU. Subsequently, the algorithm takes one of four evasive actions; steering, braking, steering after braking, and braking after steering. A simulation was performed under various conditions. The results of the simulation confirmed that the algorithm could significantly improve the performance of the collision avoidance system while securing vehicle stability during evasive maneuvers.