• 제목/요약/키워드: Automated Diagnosis

검색결과 167건 처리시간 0.026초

인체 체액에 대한 임베디드 진단 시스템의 설계 (Design of An Embedded Diagnosis System for Human Body Fluid)

  • 김원
    • 컴퓨터교육학회논문지
    • /
    • 제15권6호
    • /
    • pp.83-89
    • /
    • 2012
  • 노령 인구가 늘어가는 나라일수록 다가오는 u-health 사회를 준비하는 것은 중요한 문제로 대두되고 있다. U-health 기술은 장소와 시간에 구애받지 않고 노인들의 건강을 관리하는 일을 도울 수 있는데, 그 이유는 유비쿼터스 기술은 그 핵심 개념을 건강 관리 문제와 결합할 수 있기 때문이다. 이 연구에서는 u-health 시대에 대비하여 인체 체액에 대한 자동화된 진단 시스템을 구성할 수 있는 설계 방법을 제안한다. 구체적으로 이 시스템은 임베디드 시스템, 빛 발생 시스템, 광 감지 시스템으로 이루어지는데, 화학적 시료 패드에 조사되는 빛으로부터 분산되는 빛을 분석하며 구체적 질병에 따라 미리 정의된 색상 값에 의하여 다양한 질병을 진단하는 기능을 한다. 제안된 시스템은 실제 하드웨어로 구현되었으며 95%의 신뢰성으로 정확하게 측정할 수 있는 성능을 보인다.

  • PDF

심전도 자동 진단 알고리즘 및 장치 구현(V) - 진단 파라미터 추출 및 진단기 (An implementation of automated ECG interpretation algorithm and system(IV) - diagnosis parameter extractor and classifier)

  • 권혁제;정기삼;이정환;신건수;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.298-302
    • /
    • 1996
  • The representative beat with high SNR could be obtained by the signal averaging, correct and fast detection of significant points and waveform boundary could be obtained by adoption of search interval. All experimental results of waveform boundary were compared with CSE database which had the 5 referees results and 11 ECG measurement programs. All results were within tolerance made by referees, especially the end point of T wave were more close to the referee's results than other 11 measurement programs. The diagnosis parameters that might be used in the Minnsota code criteria were extracted from the representative beat. The diagnostic classification were fulfilled using Minnsota code criteria. Through the comparison on the diagnosis results from designed automated ECG analyzer(YECGA) and the results ECG analyzer manufactured by Fukuda denshi(FCG-2201) in Japan, reliance of the performance on designed system(YECGA) could be validated.

  • PDF

Assessment of Mild Cognitive Impairment in Elderly Subjects Using a Fully Automated Brain Segmentation Software

  • Kwon, Chiheon;Kang, Koung Mi;Byun, Min Soo;Yi, Dahyun;Song, Huijin;Lee, Ji Ye;Hwang, Inpyeong;Yoo, Roh-Eul;Yun, Tae Jin;Choi, Seung Hong;Kim, Ji-hoon;Sohn, Chul-Ho;Lee, Dong Young
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권3호
    • /
    • pp.164-171
    • /
    • 2021
  • Purpose: Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD). Brain atrophy in this disease spectrum begins in the medial temporal lobe structure, which can be recognized by magnetic resonance imaging. To overcome the unsatisfactory inter-observer reliability of visual evaluation, quantitative brain volumetry has been developed and widely investigated for the diagnosis of MCI and AD. The aim of this study was to assess the prediction accuracy of quantitative brain volumetry using a fully automated segmentation software package, NeuroQuant®, for the diagnosis of MCI. Materials and Methods: A total of 418 subjects from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease cohort were included in our study. Each participant was allocated to either a cognitively normal old group (n = 285) or an MCI group (n = 133). Brain volumetric data were obtained from T1-weighted images using the NeuroQuant software package. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to investigate relevant brain regions and their prediction accuracies. Results: Multivariate logistic regression analysis revealed that normative percentiles of the hippocampus (P < 0.001), amygdala (P = 0.003), frontal lobe (P = 0.049), medial parietal lobe (P = 0.023), and third ventricle (P = 0.012) were independent predictive factors for MCI. In ROC analysis, normative percentiles of the hippocampus and amygdala showed fair accuracies in the diagnosis of MCI (area under the curve: 0.739 and 0.727, respectively). Conclusion: Normative percentiles of the hippocampus and amygdala provided by the fully automated segmentation software could be used for screening MCI with a reasonable post-processing time. This information might help us interpret structural MRI in patients with cognitive impairment.

유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현 (Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model)

  • 박태근;곽기석;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF

PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구 (Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring)

  • 박창목
    • 대한안전경영과학회지
    • /
    • 제12권2호
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

Diagnosing Reading Disorders based on Eye Movements during Natural Reading

  • Yongseok Yoo
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.281-286
    • /
    • 2023
  • Diagnosing reading disorders involves complex procedures to evaluate complex cognitive processes. For an accurate diagnosis, a series of tests and evaluations by human experts are required. In this study, we propose a quantitative tool to diagnose reading disorders based on natural reading behaviors using minimal human input. The eye movements of the third- and fourth-grade students were recorded while they read a text at their own pace. Seven machine learning models were used to evaluate the gaze patterns of the words in the presented text and classify the students as normal or having a reading disorder. The accuracy of the machine learning-based diagnosis was measured using the diagnosis by human experts as the ground truth. The highest accuracy of 0.8 was achieved by the support vector machine and random forest classifiers. This result demonstrated that machine learning-based automated diagnosis could substitute for the traditional diagnosis of reading disorders and enable large-scale screening for students at an early age.

치과에서 디지털 x-선 영상의 이용 (Digital X-ray Imaging in Dentistry)

  • 김은경
    • 치과방사선
    • /
    • 제29권2호
    • /
    • pp.387-396
    • /
    • 1999
  • In dentistry. RadioVisioGraphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter. many types of direct digital radiographic system have been produced in the last decade. They are based either on charge-coupled device(CCD) or on storage phosphor technology. In addition. new types of digital radiographic system using amorphous selenium. image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose. image processing, computer storage. electronic transfer of images and so on. Image processing includes image enhancement. image reconstruction. digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system(IMACS) for dentomaxillofacial radiology was reported in 1992. IMACS in dental hospital has been increasing. Meanwhile. researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible. feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis. have been performed actively in the last decade. Further developments in digital radiographic imaging modalities. image transmission system. imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  • PDF

Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations

  • Park, Seongbeom;Yoon, Uicheul
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권2호
    • /
    • pp.82-88
    • /
    • 2017
  • Enlargement of the lateral ventricles have been identified as a surrogate marker of neurological disorders. Quantitative measure of the lateral ventricle from MRI would enable earlier and more accurate clinical diagnosis in monitoring disease progression. Even though it requires an automated or semi-automated segmentation method for objective quantification, it is difficult to define lateral ventricles due to insufficient contrast and brightness of structural imaging. In this study, we proposed a fully automated lateral ventricle segmentation method based on a graph cuts algorithm combined with atlas-based segmentation and connected component labeling. Initially, initial seeds for graph cuts were defined by atlas-based segmentation (ATS). They were adjusted by partial volume images in order to provide accurate a priori information on graph cuts. A graph cuts algorithm is to finds a global minimum of energy with minimum cut/maximum flow algorithm function on graph. In addition, connected component labeling used to remove false ventricle regions. The proposed method was validated with the well-known tools using the dice similarity index, recall and precision values. The proposed method was significantly higher dice similarity index ($0.860{\pm}0.036$, p < 0.001) and recall ($0.833{\pm}0.037$, p < 0.001) compared with other tools. Therefore, the proposed method yielded a robust and reliable segmentation result.

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images

  • Elshoky, Basma Ramdan Gamal;Younis, Eman M.G.;Ali, Abdelmgeid Amin;Ibrahim, Osman Ali Sadek
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.613-623
    • /
    • 2022
  • Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF