• Title/Summary/Keyword: Automated Data Analysis

Search Result 586, Processing Time 0.026 seconds

Analysis of Precipitation Effects Using Groundwater Level and Electrical Conductivity Fluctuations (지하수위 변동량과 전기전도도 변동량을 이용한 강수 효과 분석)

  • Jo, Won Gi;Kang, Dong-hwan;Park, Kyoung-deok;Kim, Moon-su;Shin, In-Kyu
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.519-527
    • /
    • 2021
  • Moving average precipitation provides periodic precipitation patterns by solving precipitation irregularities. However, due to uncertain moving average periods, excessive data smoothing occurs, which limit the possibility to analyze groundwater levels in the short term. Nonetheless, groundwater level fluctuation can compensate these limitations as it can calculate appropriately for unit time and verify the effect of precipitation penetrated into groundwater in a short time period. In this study, the characteristics of groundwater level were evaluated using groundwater level fluctuation to compensate for limitations of groundwater level analysis using moving average precipitation. In addition, the groundwater quality was investigated using the electrical conductivity fluctuation. The study site was Hyogyo-ri, Yesan-si, Chungcheongnam-do. Four observation wells and an automated weather system were used. The correlation between groundwater level fluctuation and precipitation (Case 1) and the correlation between groundwater level and moving average precipitation (Case 3) were compared. In the analysis for 1 hour data, the correlation coefficient of Case 1 was higher than that of Case 3, and in the analysis for 1 day data, the correlation coefficient of Case 3 was higher than that of Case 1.

Updating BIM: Reflecting Thermographic Sensing in BIM-based Building Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.532-536
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

  • PDF

Intermediate-Representation Translation Techniques to Improve Vulnerability Analysis Efficiency for Binary Files in Embedded Devices (임베디드 기기 바이너리 취약점 분석 효율성 제고를 위한 중간어 변환 기술)

  • Jeoung, Byeoung Ho;Kim, Yong Hyuk;Bae, Sung il;Im, Eul Gyu
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Utilizing sequence control and numerical computing, embedded devices are used in a variety of automated systems, including those at industrial sites, in accordance with their control program. Since embedded devices are used as a control system in corporate industrial complexes, nuclear power plants and public transport infrastructure nowadays, deliberate attacks on them can cause significant economic and social damages. Most attacks aimed at embedded devices are data-coded, code-modulated, and control-programmed. The control programs for industry-automated embedded devices are designed to represent circuit structures, unlike common programming languages, and most industrial automation control programs are designed with a graphical language, LAD, which is difficult to process static analysis. Because of these characteristics, the vulnerability analysis and security related studies for industry automation control programs have only progressed up to the formal verification, real-time monitoring levels. Furthermore, the static analysis of industrial automation control programs, which can detect vulnerabilities in advance and prepare for attacks, stays poorly researched. Therefore, this study suggests a method to present a discussion on an industry automation control program designed to represent the circuit structure to increase the efficiency of static analysis of embedded industrial automation programs. It also proposes a medium term translation technology exploiting LLVM IR to comprehensively analyze the industrial automation control programs of various manufacturers. By using LLVM IR, it is possible to perform integrated analysis on dynamic analysis. In this study, a prototype program that converts to a logical expression type of medium language was developed with regards to the S company's control program in order to verify our method.

A study on the selection of candidates for public bases according to the spatial distribution characteristics Automated External Defibrillator in Daegu City (대구시 자동심장충격기 공간분포 특성에 따른 공공 거점후보지 선정 연구)

  • Beak, Seong Ryul;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.599-610
    • /
    • 2020
  • The AED (Automated External Defibrillator) is not evaluated for spatial accuracy and temporal availability even if it is located within a building or a specific area that needed necessary to partition by spatial analysis and location allocation analysis. As a result of the analysis, the spatial analysis was performed using the existing public data of AED with applied the GIS location analysis method. A public institution (119 safety center, police box) was selected as a candidate for a public AED base that can operate 24 hours a day, 365 days a year according to the characteristics of each residential area. In addition, Thiessen Polygons were created for each candidate site and divided by regions. In the analysis of the service was analyzed regional in terms of accessibility to emergency medical services in consideration of the characteristics of AED, that emergency vehicles could arrive within 4 minutes of the time required for emergency medical treatment in most areas of the study area, but it did not areas outside of the city center. As a result, It was found that the operation of the AED base service center centered on vehicles of public institutions is effective for responding to AED patients at night and weekend hours. 19 Safety Center under and police box the jurisdiction of Daegu City to establish an AED service center for public institutions, location-based distance, attribute analysis, and minimization of overlapping areas that the method of using a vehicle appeared more efficient than using the existing walking type AED.

Wear Debris Analysis using the Color Pattern Recognition (칼라 패턴인식을 이용한 마모입자 분석)

  • ;A.Y.Grigoriev
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Development of an Inversion Analysis Technique for Downhole Testing and Continuous Seismic CPT

  • Joh, Sung-Ho;Mok, Young-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.95-108
    • /
    • 1998
  • Downhole testing and seismic CPT (SCPT) have been widely used to evaluate stiffness profiles of the subgrade. Advantages of downhole testing and SCPT such as low cost, easy operation and a simple seismic source have got these testings more frequently adopted in site investigation. For the automated analysis of downhole testing and SCPT, the concept of interval measurements has been practiced. In this paper. a new inversion procedure to deal tilth the interval measurements for the automated downhole testing and SCPT (including a newlydeveloped continuous SCPT) is proposed. The forward modeling in the new inversion procedure incorporates ray path theory based on Snell's law. The formulation for the inversion analysis is derived from the maximum likelihood approach, which estimates the maximum likelihood of obtaining a particular travel time from a source to a receiver. Verification of the new inversion procedure was performed with numerical simulations of SCPT using synthesized profiles. The results of the inversion analyses performed for the synthetic data show that the new inversion analysis is a valid procedure which enhances Va profiles determined by downhole testing and SCPT.

  • PDF

Machine Learning Method in Medical Education: Focusing on Research Case of Press Frame on Asbestos (의학교육에서 기계학습방법 교육: 석면 언론 프레임 연구사례를 중심으로)

  • Kim, Junhewk;Heo, So-Yun;Kang, Shin-Ik;Kim, Geon-Il;Kang, Dongmug
    • Korean Medical Education Review
    • /
    • v.19 no.3
    • /
    • pp.158-168
    • /
    • 2017
  • There is a more urgent call for educational methods of machine learning in medical education, and therefore, new approaches of teaching and researching machine learning in medicine are needed. This paper presents a case using machine learning through text analysis. Topic modeling of news articles with the keyword 'asbestos' were examined. Two hypotheses were tested using this method, and the process of machine learning of texts is illustrated through this example. Using an automated text analysis method, all the news articles published from January 1, 1990 to November 15, 2016 in South Korea which included 'asbestos' in the title and the body were collected by web scraping. Differences in topics were analyzed by structured topic modelling (STM) and compared by press companies and periods. More articles were found in liberal media outlets. Differences were found in the number and types of topics in the articles according to the partisanship and period. STM showed that the conservative press views asbestos as a personal problem, while the progressive press views asbestos as a social problem. A divergence in the perspective for emphasizing the issues of asbestos between the conservative press and progressive press was also found. Social perspective influences the main topics of news stories. Thus, the patients' uneasiness and pain are not presented by both sources of media. In addition, topics differ between news media sources based on partisanship, and therefore cause divergence in readers' framing. The method of text analysis and its strengths and weaknesses are explained, and an application for the teaching and researching of machine learning in medical education using the methodology of text analysis is considered. An educational method of machine learning in medical education is urgent for future generations.

Investigating Major Topics Through the Analysis of Depression-related Facebook Group Posts (페이스북 그룹 게시물 분석을 통한 우울증 관련 주제에 대한 고찰)

  • Zhu, Yongjun;Kim, Donghun;Lee, Changho;Lee, Yongjeong
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.4
    • /
    • pp.171-187
    • /
    • 2019
  • The study aims to analyze the posts of depression-related Facebook groups to understand major topics discussed by group users. Specifically, the purpose of the study is to identify the topics and keywords of the posts to understand what users discuss about depression. Depression is a mental disorder that is somewhat sensitive in the online community, which is characterized by accessibility, openness and anonymity. The researchers have implemented a natural language-based data analysis framework that includes components ranging from Facebook data collection to the automated extraction of topics. Using the framework, we collected and analyzed 885 posts created in the past one year from the largest Facebook depression group. To derive more complete and accurate topics, we combined both automated and manual (e.g., stop words removal, topic size determination) methods. Results indicate that users discuss a variety of topics including depression in general, human relations, mood and feeling, depression symptoms, suicide, medical references, family and etc.

A Study on Mechanism of Intelligent Cyber Attack Path Analysis (지능형 사이버 공격 경로 분석 방법에 관한 연구)

  • Kim, Nam-Uk;Lee, Dong-Gyu;Eom, Jung-Ho
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.93-100
    • /
    • 2021
  • Damage caused by intelligent cyber attacks not only disrupts system operations and leaks information, but also entails massive economic damage. Recently, cyber attacks have a distinct goal and use advanced attack tools and techniques to accurately infiltrate the target. In order to minimize the damage caused by such an intelligent cyber attack, it is necessary to block the cyber attack at the beginning or during the attack to prevent it from invading the target's core system. Recently, technologies for predicting cyber attack paths and analyzing risk level of cyber attack using big data or artificial intelligence technologies are being studied. In this paper, a cyber attack path analysis method using attack tree and RFI is proposed as a basic algorithm for the development of an automated cyber attack path prediction system. The attack path is visualized using the attack tree, and the priority of the path that can move to the next step is determined using the RFI technique in each attack step. Based on the proposed mechanism, it can contribute to the development of an automated cyber attack path prediction system using big data and deep learning technology.

On-line Finite Element Model Updating Using Operational Modal Analysis and Neural Networks (운용중 모드해석 방법과 신경망을 이용한 온라인 유한요소모델 업데이트)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • This paper presents an on-line finite element model updating method for in-service structures using measured data. Conventional updating methods, which are based on numerical optimization, are not efficient for on-line updating because they generally require repeated eigenvalue analyses until convergence criteria are met. The proposed method enables fully automated on-line finite element model updating, almost simultaneously with vibration measurement, without any user intervention or off-line procedures. The automated covariance-driven stochastic subspace identification (Cov-SSI) method is utilized to identify modal frequencies and vectors, and the identified modal data is fed to the neural network of the inverse eigenvalue function to produce the updated finite element model parameters. Numerical examples for a wind excited 20-story building structure shows that the proposed method can update the series of finite element model parameters automatically. It is also shown that sudden changes in the structural parameters can be detected and traced successfully.