• Title/Summary/Keyword: Autogenous tooth

Search Result 68, Processing Time 0.028 seconds

Alveolar Cleft Reconstruction Using Chin Bone and Autogenous Tooth Bone Graft Material: Reports of 5 Cases

  • Jeong, Kyung-In;Lee, Junho;Kim, Kyung-Wook;Um, In-Woong;Hara, Shingo;Mitsugi, Masaharu;Kim, Young-Kyun
    • Journal of Korean Dental Science
    • /
    • v.6 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • Purpose: To report the successful results of using chin bone graft and autogenous tooth bone graft material (AutoBT) in alveolar cleft patients. Materials and Methods: Five patients with alveolar cleft defects underwent alveolar bone grafting. Three patients were treated using chin bone graft, and the other two patients underwent AutoBT graft. After implant site development using chin bone graft in the fi rst three cases, endosseous implant restorations were placed. In case #4 and 5, AutoBT graft material was placed to guide the normal eruption of partially impacted maxillary right canine and to the upper docking site after distraction osteogenesis. Result: Successful implant restorations with closure of the oronasal fistula were achieved in alveolar cleft defect reconstruction using either chin bone graft (Case #1, 2, 3) or AutoBT graft material (Case #4, 5). Case #4 showed enlarged follicle of the right maxillary canine, indicating a normal eruption guide pattern. Conclusion: Both chin bone graft and AutoBT graft showed favorable outcomes in reconstructing alveolar cleft defects. Autogenous tooth bone graft opens up the possibility of avoiding harvesting autogenous bone graft with complications and morbidities.

Maxillary Sinus Augmentation Using Autogenous Teeth: Preliminary Report (자가치아뼈이식재를 이용한 상악동증강술: 일차 보고)

  • Jeong, Kyung-In;Kim, Su-Gwan;Oh, Ji-Su;Lim, Sung-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the effectiveness of autogenous tooth graft materials after maxillary sinus bone grafts. Methods: The study involved 23 implants in 22 patients who visited the Department of Oral and Maxillofacial Surgery and the Department of Periodontics, Chosun University Dental Hospital, in 2008 and received autogenous tooth graft materials for maxillary sinus bone grafts. Results: For eight patients with maxillary bone graft materials prior to implant placement, the healing period averaged five months. For eleven patients with simultaneous maxillary bone graft and implant placement, eight patients received a second surgery, with an average healing time of six months. Three patients had a longer observation period with only a fixture implanted. Three patients who received only a bone graft required more time to implant placement because of the lack of residual bone and also for personal reasons. Only 5 patients had biopsies performed and complications such as infection and dehiscence healed well. The application of autogenous graft materials to the maxillary bone graft sites did not exert any significant effects on the success rates. When a mixture of graft materials was used, the post-surgical bone resorption rate was reduced. Histological analysis showed that new bone formation and remodeling were initiated during the three-to-six month healing period. Bone formation capacity increased continuously up to six months after the maxillary bone graft. Conclusion: According to this analysis, excellent stability and bone-forming capacity were seen in cases where autogenous materials were used alone or mixed with other materials. Autogenous tooth graft materials may be substituted instead of autogenous bones.

Autogenous tooth transplantation for replacing a lost tooth: case reports

  • Kang, Ji-Youn;Chang, Hoon-Sang;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann;Lee, Bin-Na
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.1
    • /
    • pp.48-51
    • /
    • 2013
  • The autogenous tooth transplantation is an alternative treatment replacing a missing tooth when a suitable donor tooth is available. It is also a successful treatment option to save significant amount of time and cost comparing implants or conventional prosthetics. These cases, which required single tooth extraction due to deep caries and severe periodontal disease, could have good results by transplanting non-functional but sound donor tooth to the extraction site.

Clinical Effectiveness of Bone Grafting Material Using Autogenous Tooth: Preliminary Report (자가치아를 이용한 골이식재의 임상적 유용성: 일차 보고)

  • Lee, Jeong-Hoon;Kim, Su-Gwan;Moon, Sung-Young;Oh, Ji-Su;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.144-148
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the effectiveness of a novel bone grafting material using an autogeneous tooth (AutoBT) and provide the basis for its clinical application. The AutoBT contains organic and inorganic mineral components and is prepared from autogenous grafting material, thus eliminating the risk of immune reactions that may lead to its rejection. AutoBT can be used as bone material as is has both osteoinduction and osteoconduction activities at guided bone regeneration for implant placement and maxillary sinus graft. Methods: In a total of 63 patients, guided bone regeneration surgery was performed at the time of implant placement, and tissue samples were harvested at the time of the second surgery with the patient's consent. Results: There were no complications in guided bone regeneration using autogeneous tooth. Conclusion: We concluded that AutoBT underwent gradual resorption and was replaced by new bone of excellent quality via osteoinduction and osteoconduction.

Autogenous transplantation of tooth with complete root formation (치근단 완성된 치아의 자가이식)

  • Lee, Sul-Hyun;Son, Mee-Kyoung;Park, Ji-Il;Kim, Ok-Su;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.709-716
    • /
    • 2008
  • Purpose: Autogenous transplantation of teeth can be defined as transplantation of teeth from one site to another in the same individual, involving transfer of impacted or erupted teeth into extraction sites or surgically prepared sockets". Successful autogenous transplantation of teeth depends upon a complex variety of factors. Such factors include damage to the periodontal ligament of the donor tooth, residual bone height of the recipient site, extra-oral time of tooth during surgery. Schwartz and Andreasen previously reported that autogenous transplantation of teeth with incomplete root formation demonstrated higher success rate than that of teeth with complete root formation. Gault and Mejare yielded similar rate of successful autogenous transplantation both in teeth with complete root formation and in teeth with incomplete root formation when appropriate cases were selected. This case report was aimed at the clinical and radiographic view in autogenous transplantation of teeth with complete root formation. Materials and Methods: Patients who presented to the department of periodontics, Chonnam National University Hospital underwent autogenous transplantation of teeth. One patient had vertical root fracture in a upper right second molar and upper left third molar was transplanted. And another patient who needed orthodontic treatment had residual root due to caries on upper right first premolar. Upper right premolar was extracted and lower right second premolar was transplanted. Six months later, orthodontic force was applied. Results: 7 months or 11/2 year later, each patient had clinically shallow pocket depth and normal tooth mobility. Root resorption and bone loss were not observed in radiograph and function was maintained successfully. Conclusion: Autogenous transplantation is considered as a predictive procedure when it is performed for the appropriate indication and when maintenance is achieved through regular radiographic taking and follow-up.

Effect on bone formation of the autogenous tooth graft in the treatment of peri-implant vertical bone defects in the minipigs

  • Kim, Seok Kon;Kim, Sae Woong;Kim, Kyung Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.2.1-2.9
    • /
    • 2015
  • Background: The aim of this study was to evaluate the effect of autogenous tooth bone as a graft material for regeneration of bone in vertical bony defects of the minipigs. Material and Methods: Six minipigs were used in this study. Four molars were extracted in the right mandibular dentition and sent to the Korea Tooth Bank for fabrication of autogenous tooth bone. Ten days later, each extraction site was implanted with MS Implant Narrow Ridge $3.0{\times}10mm$ fixture (Osstem, Seoul, Korea) after standardized 2mm-sized artificial vertical bony defect formation. Pineappleshaped Root-On type autogenous tooth bones were applied to the vertical defects around the neck area of the posterior three fixtures and the fore-most one was not applied with autogenous bone as a control group. Each minipig was sacrificed at 4, 8, 12 weeks after fixture installation and examined radiologically and histologically. Histological evaluation was done under light microscope with Villanueva osteochrome bone staining with semi-quantitative histomorphometric study. Percentage of new bone over total area (NBF) and bone to implant contact (BIC) ratio were evaluated using digital software for area calculation. Result: NBF were $48.15{\pm}18.02%$, $45.50{\pm}28.37%$, and $77.13{\pm}15.30%$ in 4, 8, and 12 weeks, respectively for experimental groups. The control group showed $37.00{\pm}11.53%$, $32.25{\pm}26.99%$, and $1.33{\pm}2.31%$ in 4,8,12 weeks, respectively. BIC ratio were $53.08{\pm}19.82%$, $45.00{\pm}28.37%$, and $75.13{\pm}16.55%$ in 4,8,12 weeks, respectively. Those for the control groups were $38.33{\pm}6.43%$, $33.50{\pm}29.51%$, and $1.33{\pm}2.31%$ in 4, 8, 12 weeks, respectively. Conclusion: Autogenous tooth bone showed higher score than control group in NBF and BIC in all the data encompassing 4,8,12 weeks specimens, but statistically significant only 12 weeks data in both NBF and BIC.

Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series

  • Kim, Young-Kyun;Yun, Pil-Young;Um, In-Woong;Lee, Hyo-Jung;Yi, Yang-Jin;Bae, Ji-Hyun;Lee, Junho
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.521-527
    • /
    • 2014
  • This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity.

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

  • Lee, Eun-Young;Kim, Eun-Suk;Kim, Kyung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.103-110
    • /
    • 2014
  • Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction.

Bone Healing Capacity of Demineralized Dentin Matrix Materials in a Mini-pig Cranium Defect

  • Kim, Jong-Yub;Kim, Kyung-Wook;Um, In-Woong;Kim, Young-Kyun;Lee, Jeong-Keun
    • Journal of Korean Dental Science
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose: In this study the bone healing ability of autogenous tooth bone graft material as a substitute material was evaluated in a mini-pig cranial defect model through histologic examinations and osteonectin reverse transcription polymerase chain reaction (RT-PCR) quantitative analysis. Materials and Methods: A defect was generated in the cranium of mini-pigs and those without a defect were used as controls. In the experimental group, teeth extracted from the mini-pig were manufactured into autogenous tooth bone graft material and grafted to the defect. The mini-pigs were sacrificed at 4, 8, and 12 weeks to histologically evaluate bone healing ability and observe the osteonectin gene expression pattern with RT-PCR. Result: At 4 weeks, the inside of the bur hole showed fibrosis and there was no sign of bone formation in the control group. On the other hand, bone formation surrounding the tooth powder granule was observed at 4 weeks in the experimental group where the bur hole was filled with tooth powder. Osteonectin gene expression; there was nearly no osteonectin expression in the control group while active osteonectin expression was observed from 4 to 12 weeks in the experimental group. Conclusion: We believe this material will show better results when applied in a clinical setting.