• 제목/요약/키워드: Autoencoder

검색결과 202건 처리시간 0.03초

넷플로우-타임윈도우 기반 봇넷 검출을 위한 오토엔코더 실험적 재고찰 (An Experimental Study on AutoEncoder to Detect Botnet Traffic Using NetFlow-Timewindow Scheme: Revisited)

  • 강구홍
    • 정보보호학회논문지
    • /
    • 제33권4호
    • /
    • pp.687-697
    • /
    • 2023
  • 공격 양상이 더욱 지능화되고 다양해진 봇넷은 오늘날 가장 심각한 사이버 보안 위협 중 하나로 인식된다. 본 논문은 UGR과 CTU-13 데이터 셋을 대상으로 반지도 학습 딥러닝 모델인 오토엔코더를 활용한 봇넷 검출 실험결과를 재검토한다. 오토엔코더의 입력벡터를 준비하기 위해, 발신지 IP 주소를 기준으로 넷플로우 레코드를 슬라이딩 윈도우 기반으로 그룹화하고 이들을 중첩하여 트래픽 속성을 추출한 데이터 포인트를 생성하였다. 특히, 본 논문에서는 동일한 흐름-차수(flow-degree)를 가진 데이터 포인트 수가 이들 데이터 포인트에 중첩된 넷플로우 레코드 수에 비례하는 멱법칙(power-law) 특징을 발견하고 실제 데이터 셋을 대상으로 97% 이상의 상관계수를 제공하는 것으로 조사되었다. 또한 이러한 멱법칙 성질은 오토엔코더의 학습에 중요한 영향을 미치고 결과적으로 봇넷 검출 성능에 영향을 주게 된다. 한편 수신자조작특성(ROC)의 곡선아래면적(AUC) 값을 사용해 오토엔코더의 성능을 검증하였다.

이미지 분류를 위한 오토인코더 기반 One-Pixel 적대적 공격 방어기법 (Autoencoder-Based Defense Technique against One-Pixel Adversarial Attacks in Image Classification)

  • 심정현;송현민
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1087-1098
    • /
    • 2023
  • 인공지능 기술의 급격한 발전으로 다양한 분야에서 적극적으로 활용되고 있으나, 이와 함께 인공지능 기반 시스템에 대한 공격 위협이 증가하고 있다. 특히, 딥러닝에서 사용되는 인공신경망은 입력 데이터를 고의로 변형시켜 모델의 오류를 유발하는 적대적 공격에 취약하다. 본 연구에서는 이미지에서 단 하나의 픽셀 정보만을 변형시킴으로써 시각적으로 인지하기 어려운 One-Pixel 공격으로부터 이미지 분류 모델을 보호하기 위한 방법을 제안한다. 제안된 방어 기법은 오토인코더 모델을 이용하여 분류 모델에 입력 이미지가 전달되기 전에 잠재적 공격 이미지에서 위협 요소를 제거한다. CIFAR-10 데이터셋을 이용한 실험에서 본 논문에서 제안하는 오토인코더 기반의 One-Pixel 공격 방어 기법을 적용한 사전 학습 이미지 분류 모델들은 기존 모델의 수정 없이도 One-Pixel 공격에 대한 강건성이 평균적으로 81.2% 향상되는 결과를 보였다.

Missing Value Imputation Technique for Water Quality Dataset

  • Jin-Young Jun;Youn-A Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.39-46
    • /
    • 2024
  • 많은 연구자들이 다양한 모델을 이용하여 물의 수질을 평가하기 위해 노력하고 있다. 평가 모델에는 결측값이 없는 데이터셋이 필요하지만, 관측 데이터셋에는 결측값이 다수 포함되는 것이 현실이다. 단순히 결측값을 삭제하는 방법은 경우에 따라 기저 데이터의 분포를 왜곡시키고 모델의 예측성능에도 편의(bias)를 불러올 위험성이 있다. 본 연구에서는 수질 데이터의 결측값 처리에 적합한 기법을 탐색하기 위해, 기존의 KNN과 MICE Imputation, 그리고 생성형 신경망 모델인 Autoencoder와 Denoising Autoencoder를 기반으로 몇 가지 대치 기법을 실험하였다. 실험 결과, KNN과 MICE Imputation의 결과를 평균한 Combined Imputation이 실측치에 가장 가깝게 값을 추정하였으며, 이 기법을 적용하여 결측값을 처리한 관측 데이터셋을 support vector machine과 ensemble 기반의 분류 모델로 평가한 결과, 결측값을 삭제했을 때에 비해 Accuracy, F1 score, ROC-AUC score, 그리고 MCC(Mathews Correlation Coefficient) 지표가 향상되었다.

가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템 (Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function)

  • 김동현;임형철;이성수
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.6-13
    • /
    • 2024
  • 본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.

다중 센서 데이터를 활용한 오토인코더 기반 화재감지 모델 (Autoencoder Based Fire Detection Model Using Multi-Sensor Data)

  • 김태성;최효린;정영선
    • 스마트미디어저널
    • /
    • 제13권4호
    • /
    • pp.23-32
    • /
    • 2024
  • 대형 화재 발생과 그로 인한 피해가 증가하고 있는 상황에서, 화재감지 시설에 대한 신뢰는 낮아지고 있다. 현재 널리 사용되는 화학 화재감지기는 오경보가 빈번하게 발생하며, 비디오 기반 딥러닝 화재감지는 시간과 비용이 많이 소요되는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 오토인코더 모델을 활용한 화재감지 모델을 제안한다. 오경보를 최소화하고 신속 정확한 화재감지를 목표로 한다. 제안된 모델은 오토인코더 방법론을 이용해 화재 데이터 없이 정상 데이터만으로 모델을 학습시킬 수 있어 새로운 환경에 적용이 용이하다. 5가지 센서 데이터를 종합적으로 반영하여 화재를 신속하고 정확히 감지할 수 있다. 다양한 초모수 조합을 실험하여 최적의 초모수를 선정하였으며, 오경보 문제를 줄일 수 있는 화재 시점 판단 규칙을 제안하였다. 제안한 모델로 화재감지 실험을 진행한 결과, 14개의 시나리오 중 13개의 시나리오에서 오경보 문제가 발생하지 않았고, 동일한 데이터로 임계치 비교 알고리즘과 결과를 비교하였을 때 더 빠른 화재 감지 성능을 보였다. 이를 통해 화재로 인한 피해를 최소화하고, 화재감지 시설의 신뢰도를 높일 수 있을 것이다.

설비 결함 식별 최적화를 위한 오토인코더 기반 N 분할 주파수 영역 이상 탐지 (Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification)

  • 박기창;이용관
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.130-139
    • /
    • 2024
  • 제조 분야 설비 예지보전을 위해서 진동, 전류, 온도 등 물리 데이터를 기반으로 설비 이상을 탐지하는 인공지능 학습 모델이 활용되고 있다. 설비 결함, 고장 등 설비 이상 유형은 매우 다양하므로, 주로 오토인코더 기반 비지도 학습 모델을 이용한 이상 탐지 방법이 적용되고 있다. 설비 상태의 정상, 비정상 여부는 오토인코더의 재구성 오차를 이용해 효과적으로 분류할 수 있지만, 설비 이상의 구체적인 상태를 식별하는 데 한계가 있다. 설비 불균형, 정렬 불량, 고정 불량 등 설비 이상 상황 발생 시, 설비 진동 주파수는 특정 영역에서 정상 상태와 다른 패턴을 나타낸다. 본 논문에서는 전체 진동 주파수 범위를 N개 영역으로 나누어 이상 탐지를 수행하는 N 분할 이상 탐지 방법을 제시하였다. 압축기의 진동 데이터를 이용해 주파수와 강도를 달리한 9종의 이상 데이터를 대상으로 실험한 결과, N 분할을 적용하였을 때 더 높은 이상 탐지 성능을 나타냈다. 제안 방법은 설비 이상 탐지 이후, 설비 이상 구체화에 활용될 수 있다.

이상 전력 탐지를 위한 TCN-USAD (TCN-USAD for Anomaly Power Detection)

  • 진현석;김경백
    • 스마트미디어저널
    • /
    • 제13권7호
    • /
    • pp.9-17
    • /
    • 2024
  • 에너지 사용량의 증가와 친환경 정책으로 인해 건물 에너지를 효율적으로 소비할 필요가 있으며, 이를 위해 딥러닝 기반 이상 전력 탐지가 수행되고 있다. 수집이 어려운 이상치 데이터의 특징으로 인해 Recurrent Neural Network(RNN) 기반 오토인코더를 활용한 복원 에러 기반으로 이상 탐지가 수행되고 있으나, 시계열 특징을 온전히 학습하는데 시간이 오래 걸리고 학습 데이터의 노이즈에 민감하다는 단점이 있다. 본 논문에서는 이러한 한계를 극복하기 위해 Temporal Convolutional Network(TCN)과 UnSupervised Anomaly Detection for multivariate time series(USAD)를 결합한 TCN-USAD를 제안한다. 제안된 모델은 TCN 기반 오토인코더와 두 개의 디코더와 적대적 학습을 사용하는 USAD 구조를 활용하여 빠르게 시계열 특징을 온전히 학습할 수 있고 강건한 이상 탐지가 가능하다. TCN-USAD의 성능을 입증하기 위해 2개의 건물 전력 사용량 데이터 세트를 사용하여 비교 실험을 수행한 결과, TCN 기반 오토인코더는 RNN 기반 오토 인코더 대비 빠르고 복원 성능이 우수하였으며, 이를 활용한 TCN-USAD는 다른 이상 탐지 모델 대비 약 20% 개선된 F1-Score를 달성하여 뛰어난 이상 탐지 성능을 보였다.

Non-Intrusive Speech Intelligibility Estimation Using Autoencoder Features with Background Noise Information

  • Jeong, Yue Ri;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.220-225
    • /
    • 2020
  • This paper investigates the non-intrusive speech intelligibility estimation method in noise environments when the bottleneck feature of autoencoder is used as an input to a neural network. The bottleneck feature-based method has the problem of severe performance degradation when the noise environment is changed. In order to overcome this problem, we propose a novel non-intrusive speech intelligibility estimation method that adds the noise environment information along with bottleneck feature to the input of long short-term memory (LSTM) neural network whose output is a short-time objective intelligence (STOI) score that is a standard tool for measuring intrusive speech intelligibility with reference speech signals. From the experiments in various noise environments, the proposed method showed improved performance when the noise environment is same. In particular, the performance was significant improved compared to that of the conventional methods in different environments. Therefore, we can conclude that the method proposed in this paper can be successfully used for estimating non-intrusive speech intelligibility in various noise environments.

원전 계측 신호 오류 식별 알고리즘 개발 (Development of Nuclear Power Plant Instrumentation Signal Faults Identification Algorithm)

  • 김승근
    • 한국산업정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.1-13
    • /
    • 2020
  • 본 논문에서는 원전 비상 상황 발생 시 다수의 신호 오류가 발생했을 때 어떤 신호에 오류가 발생했는지를 추정하는 신호 오류 식별 (Fault identification) 방법론을 개발하였다. 변분 오토인 코더 (Variational autoencoder; VAE) 기반 모델은 기존의 이상 탐지 방법론과 같이 정상 신호 데이터만을 이용하여 훈련이 진행되며, 이후 각 신호에 대한 복원 오차 (Reconstruction error)와 복원 오차를 입력의 특정 부분으로 미분한 값을 이용하여 어떤 부분에 오류가 포함되어 있는지를 예측한다. 데이터 취득을 위하여 시뮬레이션을 수행하였으며, 일련의 실험으로부터 제시한 신호 오류 식별 방법이 적절한 오차 범위 내에서 오류가 발생한 신호를 특정할 수 있음을 확인하였다.

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

  • Seo, Minji;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1407-1423
    • /
    • 2020
  • A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.