• Title/Summary/Keyword: Autocrine Growth Activity

Search Result 16, Processing Time 0.026 seconds

EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND ITS RECEPTORS IN THE DISTRACTED PERIOSTEUM AFTER MANDIBULAR DISTRACTION OSTEOGENESIS (하악골 신장술 후 신생 골막조직에서의 혈관내피세포성장인자 및 혈관내피세포성장인자 수용체 발현에 대한 연구)

  • Hwang, Deung-Uc;Byun, June-Ho;Park, Bong-Wook;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.549-558
    • /
    • 2006
  • During distraction osteogenesis, the angiogenic activity is crucial factor in the new bone formation. The aim of this study was to detect the autocrine growth activity in the cellular components of the distracted periosteum with observation of the expression of vascular endothelial growth factor (VEGF) and its receptors following the mandibular distraction osteogenesis. Unilateral mandibular distraction (0.5 mm twice per day for 10 days) was performed in six mongrel dogs. Two animals were sacrificed at 7, 14, and 28 days after completion of distraction, respectively. The distracted lingual periosteum was harvested and processed for immunohistochemical examinations. After then, we observed the expression of VEGF, Flt-1 (VEGFR-1), and Flk-1 (VEGFR-2) in the osteoblasts and immature mesenchymal cells of the distracted periosteum. At 7 days after distraction, the expression of VEGF and its receptors were significantly increased in the cellular components of the distracted periosteum. Up to 14 days following distraction, the increased expressions were maintained in the osteoblastic cells. At 28 days after distraction, the expression of VEGF and its receptors decreased, but VEGF was still expressed weak or moderate in the osteoblastic cells of distracted periosteum. The expression pattern of VEGF and its receptors shown here suggested that VEGF play an important role in the osteogenesis, and these osteoblastic cell-derived VEGF might act as autocrine growth factor during distraction osteogenesis. In the other word, the cellular components in the distracted periosteum, such as osteoblasts and immature mesenchymal cells, might have autocrine growth activity during distraction osteogenesis.

AN EXPERIMENTAL STUDY FOR THE DETECTION OF AUTOCRINE GROWTH ACTIVITY IN THE OSTEOGENIC CELLS AFTER MANDIBULAR DISTRACTION OSTEOGENESIS (하악골 신장술 후 신생골 조직에서 자가분비성장능력의 활성에 대한 실험적 연구)

  • Byun, June-Ho;Park, Bong-Wook;Park, Seong-Cheol;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.331-339
    • /
    • 2007
  • Background: Distraction osteogenesis(DO) is a useful method for treating cases demanding the generation of new bone. During DO, the angiogenic activity is crucial factor in the new bone formation. The aim of this study was to detect the autocrine growth activity in the cellular components of the distracted bone with observation of the co-expression of vascular endothelial growth factor(VEGF) and its receptors following the mandibular DO. Materials and methods: Unilateral mandibular distraction(0.5 mm twice per day for 10 days) was performed in six mongrel dogs. Two animals were killed at 7, 14, and 28 days after completion of distraction, respectively. Immediately after the animals were killed, the right mandibles were harvested en block. Immunohistochemical staining was processed for observation of the VEGF expression, and double immunofluorescent staining was also processed for detection of the co-expression of osteocalcin and VEGF's two distinct receptors(VEGFR-1 and VEGFR-2). Results: At 7 and 14 days after distraction, the expressions of VEGF were significantly increased in the osteogenic cells of the distracted bone. Up to 28 days after distraction, VEGF was still expressed moderate in the osteoblastic cells of distracted bone. The co-expressions of osteocalcin/VEGFR-1 and osteocalcin/VEGFR-2 were observed in the distracted bone at 7 and 14 days after distraction. In the double immunofluorescent staining, the co-expression' s level of osteocalcin/VEGFR-1 was more than that of osteocalcin/VEGFR-2. Conclusion: Taken together, this study suggested that VEGF plays an important role in the osteogenesis, and these osteoblastic cell-derived VEGF might act as autocrine growth factor during distraction osteogenesis. In the other word, the cellular components, such as osteoblasts and immature fibroblast-like cellsor mesenchymal cells in the distracted bone, might have autocrine growth activity during distraction osteogenesis.

THE EFFECT OF GROWTH FACTORS IN PLATELET-RICH PLASMA ON THE ACTIVITY OF OSTEOBLAST CELL LINE (혈소판농축혈장 내의 성장요소가 조골세포주의 활성도에 미치는 영향)

  • Jung Tae-Wook;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.175-191
    • /
    • 2004
  • Statement of problem: Platelet-rich plasma(PRP) is well known to be very effective method to stimulate and accelerate the healing of bone and soft tissue. However, there are few reports which deal with the mechanisms of the PRP on the activation of the osteoblasts. Purpose: This study was aimed to investigate the effect of growth factors in PRP on the activity of osteoblasts. Material and method: To evaluate the effect on human, human osteoblast cell line was cultured. PRP was extracted from the blood of a healthy volunteer. Using the recombinant growth factors of PDGF, $TGFT-\beta$, IGF-1, bFGF which are mainly found at bone matrix and their neutralizing antibody, the effect of PRP on the attachment and proliferation of osteoblasts was evaluated. To evaluate the autocrine and paracrine effects, conditioned media(CM) of PRP was made and compared with PRP. By the western blot analysis, the expression of growth factors in PRP, CM was examined. Cell morphology was compared by the light microscope. Results : 1) The effects of CM on osteoblast were similar to the effects of PRP. 2) PRP, CM, recombinant $TGF-\beta$, bFGF, IGF-1 showed significantly higher cellular attachment than control(p<0.05) in the cell attachment assay. In the cell proliferation assay, PRP, CM, recombinant $TGF-\beta$, IGF-1, bFGF, PDGF increased significantly cell proliferation(p<0.01). Among the recombinant growth factors, IGF-1 showed the highest cellular attachment and proliferation. 3) In the western blot assay, bFGF, IGF-1, PDGF weve equally expressed in PRP and CM. 4) The attachment of osteoblast cell decreased significantly after the addition of neutralizing antibody against $TGF-\beta$, IGF-1(p<0.05). In the cell proliferation assay, the addition of neutralizing antibody against $TGF-\beta$, bFGF, PDGF, IGF-1 decreased significantly the cellular proliferation(p<0.05). The amount of decreasing in the cell attachment and proliferation is the highest in at-lGF-1. 5) The cells in control group were flattened and elongated with a few cellular processes in the a light microscope. But, the cells appeared as spherical, plump cells with well developed cellular processes in experimental groups. The cells in PRP and CM had more prominent developed features than recombinant growth factor groups. Conclusions : These findings imply that PRP maximize the cellular activity in early healing period using the synergistic effect, autocrine, paracrine effects of growth factors and increase the rate and degree of bone formation.

VEGF-RELATED AUTOCRINE GROWTH IN PERIOSTEAL-DERIVED CELLS (골막기원세포에서 발현되는 혈관내피세포성장인자 관련 자가성장)

  • Park, Bong-Wook;Lee, Seong-Gyun;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Byun, June-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.294-298
    • /
    • 2009
  • Purpose: The development of a microvascularization is important for the homeostasis of normal bone. Vascular endothelial growth factor (VEGF) is one of the most important factors in vessel formation. The purpose of this study was to examine VEGF-related autocrine growth in periosteal-derived cells. Materials and methods: Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the periosteal-derived cells were further cultured for 21 days in an osteogenic inductive culture medium containing dexamethasone, ascorbic acid, and $\beta$-glycerophosphate. Results: The expression of four VEGF isoforms and VEGFRs was observed in periosteal-derived cells. Treatment with cultures with VEGFR-1 and VEGFR-2 Kinase Inhibitor inhibited osteoblastic differentiation and alkaline phosphatase (ALP) activity of periosteal-derived cells. In addition, exogenous VEGF treatment increased calcium content in the periosteal-derived cells. Conclusion: These results suggest that VEGF might act as an autocrine growth molecule during osteoblastic differentiation of cultured human periosteal-derived cells.

A Study of the Effect of Platelet-Rich Plasma on the Cellular Proliferation and Differentiation of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포증식 및 분화에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • The osseointegration in implant therapy is achieved following general wound healing mechanism. Platelet play a major role in wound healing process. In addition to blood clot formation, they secrete many growth factors which regulate the attachment, proliferation and differentiation of nearly all cell types. The use of these growth factors is now known to be very effective methods to improve the cellular activity. Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. Previous study proved that platelet-rich plasma enhanced the cellular attachment by inducing fibronectin, vitronectin from osteoblast. So, this study was aimed to investigate the effect of platelet-rich plasma on the cellular proliferation and differentiation in vitro. The effect on the proliferation was evaluated by MTT assay. To evaluate autocrine and paracrine effect, conditioned medium was made and compared. By measuring alkaline phosphatase activity, the effect on the cellular differentiation was evaluated. The results were as following: The cellular proliferation of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The alkaline phosphatase activity increased depending on the concentration of platelet-rich plasma and conditioned medium. These findings imply that platelet-rich plasma enhance the cellular proliferation and differentiation and maximize the cellular activity by using the autocrine and paracrine effect.

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Effect of Growth Hormone Releasing Hormone on the Proliferation of Cultured Cells Derived from Rat Anterior Pituitary Gland (배양중인 흰쥐 뇌하수체 전엽 세포의 증식에 미치는 Growth Hormone Releasing Hormone (GHRH)의 영향)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.237-242
    • /
    • 2000
  • Growth hormone releasing hormone (GHRH), the major hypothalamic stimulus of GH secretion from the anterior pituitary gland, has been found to be present in several extrahypothalamic sites including placenta testis, ovary and anterior pituitary gland. The present study was performed to elucidate the role of pituitary GHRH on proliferation of cells derived from rat anterior pituitary gland. The GHRH content of pituitary tissue, cultured pituitary cells, and the conditioned media was evaluated by radioimmunoassay (RIA). Primary cultures of pituitary cells derived from adult rats were prepared by enzymatic dispersion. Significant amounts of GHRH-like molecules were detected in both pituitary tissue and cell cultures by GHRH RIA. Competition curves with increasing amounts of tissue extracts and conditioned media were parallel with those of standard peptide, indicating that the pituitary GHRH-like material is similar to authentic GHRH. To analyze specific cell types responsible for producing GHRH in anteroior pituitary, cell fractionation technique combined with GHRH RIA was performed. In cell fractionation experiment, the highest level of GHRH content was found in gonadotrope enriched-fraction and followed by somatotrope-, lactotrope- and thyrotrope-fraction. Treatment of pituitary cells with GHRH resulted in a dose-dependent increase in [$^3$H] thymidine incorporation. The mitogenic effect of GHRH could be mediated by typical oncogenic activation since the GHRH induced transient increase in c-fos mRNA levels with peak response at 30 minutes. The present study demonstrated that i) the pituitary GHRH expressed in the rat anterior pituitary gland can be secreted, ii) among the various cell types, gonadotropes and somatotorpes are the major GHRH source, and iii) the GHRH treatment increased the [$^3$H] thymidine incorporation and c-fos transcriptional activity in the pituitary cell culture. These findings suggested that GHRH could participated in the paracrine and/or autocrine regulation of cell proliferation, as well as promoting growth hormone secretion.

  • PDF

Study of the Mechanism for the Growth Inhibitory Effects of Conjugated Linoleic Acid on Caco-2 Colon Cancer Cells (Conjugated Linoleic Acid에 의한 대장암 세포 증식 억제 기전 연구)

  • 김은지;오윤신;이현숙;박현서;윤정한
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.270-279
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA) and exhibits anticarcinogenic activity in a variety of animal models. We have previously observed that CLA inhibited the growth of Caco-2 cells, a human colon adenocarcinoma cell line. The present study was performed to determine whether the growth inhibitory effect of CLA is related to change in secretion of IGF- II and/or IGF-binding proteins (IGFBPs) that have been shown to regulate Caco-2 cell proliferation by an autocrine mechanism. Cells were incubated in serum-free medium with various concentrations of CLA or linoleic acid (LA). Immunoblot analysis of 24-hours, serum-free, conditioned medium using a monoclonal anti-IGF-IIantibody revealed that Caco-2 cells secreted both mature 6,500 Mr and higher Mr forms of pro IGF-II. The levels of pro IGF-II and mature IGF-IIwere decreased by 43 $\pm$ 2% and 53 $\pm$ 6%, respectively by treatment with 50 $\mu$ M CLA. LA slightly increased pro IGF- II levels. Results from Northern blot analysis showed that CLA decreased IGF-II mRNA levels at 50 $\mu$ M concentration suggesting that CLA regulation of IGF-II protein expression occurs partly at the transcriptional level. Ligand blot analysis of conditioned media using 1251-IGF-II revealed that CLA slightly decreased IGFBP-2 levels and increased IGFBP-4 levels. We confirmed our previous results that CLA inhibited cell growth in a dose-dependent manner but LA slightly increased cell growth. Exogenous IGF-II mitigated the growth inhibitory effect of CLA. These results indicate that the growth inhibitory effect of CLA may be at least in part mediated by decreasing IGF-II and IGFBP-2 secretion and increasing IGFBP-4 secretion in Caco-2 cells.

Angiokeratoma circumscriptum of the buccal mucosa: a case report and literature review

  • Kang, Young-Hoon;Byun, June-Ho;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.5
    • /
    • pp.240-245
    • /
    • 2014
  • Angiokeratoma is a benign cutaneous lesion of the capillaries, presenting as dilated vessels in the upper part of the dermis. Although this disorder is classified into various types and has been occasionally reported in the skin of the scrotum or extremities, the involvement of the oral cavity mucosa has been rarely reported. The present study reports a case of angiokeratoma circumscriptum in the buccal mucosa. The expression of vascular endothelial growth factor (VEGF) and both of its receptors (VEGFR-1 and VEGFR-2) was demonstrated by immunohistochemistry in the endothelial cells lining the dilated vessels. The expression of VEGFR-2 was higher than that of VEGFR-1 in the endothelial cells in the lesion, indicating an increased rate of endothelial cell proliferation within the lesion. Interestingly, some of the endothelial cells co-expressed VEGF and its two receptors. These results suggest that endothelial cells in the pathologically dilated vessels possess VEGF autocrine growth activity involved in vasculogenesis and maintenance in angiokeratoma lesions. To our knowledge, this is the second report published on isolated oral angiokeratoma confined to the buccal mucosa and the first case report on angiokeratoma circumscriptum involving the buccal mucosa.

Transforming Growth Factor-Beta Stimulates Osteoclastic Bone Resorption in vitro (파골세포에 대한 Transforming Growth Factor-$\beta$의 활성화 작용)

  • 양대석;김일찬;고성희;유병제;남궁용;강신성;이창호
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.317-324
    • /
    • 1996
  • Osteoclast has been known as a primary responsible cell for the bone resorption. The activation of osteoclast, therefore, may be the key event in the regulation of bone growth and remodeling. Various factors were reported to have influence on the resorbing activity of osteoclast in organ culture. Among those factors, transforming growth factor-$\beta$ (TGF-$\beta$) has been known to have a profound effect on bone metabolism. Since a large amount of TGF-$\beta$ presents in bone tissue, it may be important for the understanding the regulatory mechanism of bone resorption to elucidate the effect of TGF-$\beta$ on the osteoclast. We have reported the dlsaggregated chick embryonic osteoclast culture as an useful assay method for determining the resorption activity of osteoclast. In this culture, we found that TGF-$\beta$ significantly enhaced the osteoclastic bone resorption activity. We also found that the timulatory effect seemed to be an indirect one that is mediated by other cells. As nordihydroguaiaretic acid significantly inhibited the TGF-$\beta$1-induced osteoclastic bone resorption, we suggest that the lipoxygenase derivative of arachidonic acid may participate in the action of TGF-$\beta$ as a paracrine or an autocrine mediator.

  • PDF