Browse > Article

AN EXPERIMENTAL STUDY FOR THE DETECTION OF AUTOCRINE GROWTH ACTIVITY IN THE OSTEOGENIC CELLS AFTER MANDIBULAR DISTRACTION OSTEOGENESIS  

Byun, June-Ho (Department of Oral & Maxillofacial Surgery, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Park, Bong-Wook (Department of Oral & Maxillofacial Surgery, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Park, Seong-Cheol (Department of Oral & Maxillofacial Surgery, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Kim, Gyoo-Cheon (Department of Oral Anatomy, School of Dentistry, Pusan National University)
Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University)
Kim, Jong-Ryoul (Department of Oral & Maxillofacial Surgery, School of Dentistry, Pusan National University)
Publication Information
Journal of the Korean Association of Oral and Maxillofacial Surgeons / v.33, no.4, 2007 , pp. 331-339 More about this Journal
Abstract
Background: Distraction osteogenesis(DO) is a useful method for treating cases demanding the generation of new bone. During DO, the angiogenic activity is crucial factor in the new bone formation. The aim of this study was to detect the autocrine growth activity in the cellular components of the distracted bone with observation of the co-expression of vascular endothelial growth factor(VEGF) and its receptors following the mandibular DO. Materials and methods: Unilateral mandibular distraction(0.5 mm twice per day for 10 days) was performed in six mongrel dogs. Two animals were killed at 7, 14, and 28 days after completion of distraction, respectively. Immediately after the animals were killed, the right mandibles were harvested en block. Immunohistochemical staining was processed for observation of the VEGF expression, and double immunofluorescent staining was also processed for detection of the co-expression of osteocalcin and VEGF's two distinct receptors(VEGFR-1 and VEGFR-2). Results: At 7 and 14 days after distraction, the expressions of VEGF were significantly increased in the osteogenic cells of the distracted bone. Up to 28 days after distraction, VEGF was still expressed moderate in the osteoblastic cells of distracted bone. The co-expressions of osteocalcin/VEGFR-1 and osteocalcin/VEGFR-2 were observed in the distracted bone at 7 and 14 days after distraction. In the double immunofluorescent staining, the co-expression' s level of osteocalcin/VEGFR-1 was more than that of osteocalcin/VEGFR-2. Conclusion: Taken together, this study suggested that VEGF plays an important role in the osteogenesis, and these osteoblastic cell-derived VEGF might act as autocrine growth factor during distraction osteogenesis. In the other word, the cellular components, such as osteoblasts and immature fibroblast-like cellsor mesenchymal cells in the distracted bone, might have autocrine growth activity during distraction osteogenesis.
Keywords
Distraction Osteogenesis; Osteogenic Cell; Vascular Endothelial Growth Facotor Receptors; Autocrine Growth Activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Goad D, Rubin J, Wang H, Tashjian AH Jr, Patterson C: Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblast induced by insulin-like growth factor I. Endocrinology 1996;137:2262-2268   DOI   ScienceOn
2 Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner RE: VEGF-A and PIGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Commun 2005;334:561-568   DOI   ScienceOn
3 Street J, Winter D, Wang JH, Wakai A, McGuinness A, Redmond HP: Is human fracture hematoma inherently angiogenic? Clin Orthop 2000;378:224-234   DOI
4 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB 1999;13:9-22   DOI
5 Li G, Simpson AH, Kenwright J, Triffitt JT: Effect of lengthening rate on angiogenesis during distraction osteogenesis. J Orthop Res 1999;17:362-367   DOI
6 Tavakoli T, Yu Y, Shahidi S, Bonar F, Walsh WR, Poole MD: Expression of growth factors in the mandibular distraction zone: a sheep study. Br J Plast Surg 1999;52:434-439   DOI   ScienceOn
7 Farhadieh RD, Dickson R, Yu Y, Gianoutsos MP, Walsh WG: The role of transtorming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible. J Craniofac Surg 1999;10:80-86   DOI
8 Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H: Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 2005;95:827-839   DOI   ScienceOn
9 Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Paul W, Brenner RE: Vascular endothelial growth factor stimulates chemotatic migration of primary human osteoblasts. Bone 2002;30:472-477   DOI   ScienceOn
10 Reilly TM, Seldes R, Luchetti W, Brighton CT: Similarities in the phenotypic expression of percytes and bone cells. Clin Orthop 1998;346:95-103
11 Villars F, Bordenave L, Bareille R, Amedee J: Effect of human endothelial cell on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 2000;79:672-685   DOI   ScienceOn
12 Bouletreau PJ, Warren SM, Longaker MT: The molecular biology of distraction osteogenesis. J Cranio-Maxillofac Surg 2002;30:1-11   DOI   ScienceOn
13 Harada S, Rodan SB, Rodan GA: Expression and regulation of vascular endothelial growth factor in osteoblasts. Clin Orthop Relat Res 1995;313:76-80
14 Byun JH, Park BW, Sung IY, Cho YC, Kim JR: Immunohistochemical study of osteopontin expression in the distracted bone after canine mandibular distraction osteogenesis. J Kor Oral Maxillofac Surg 2006;32:418-425   과학기술학회마을
15 Richard M, Goulet JA, Schaffler MB, Goldstein SA: Temporal and spatial characterization of regenerate bone in the lengthened rabbit tibia. J Bone Miner Res 1999;14:1978-1986   DOI   ScienceOn
16 Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT: VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. Am J Physiol Cell Physiol 2000;278:C853-860
17 Furumatsu T, Shen ZN, Kawai A, Nishida K, Manabe H, Oohashi T, Inoune H, Ninomiya Y: Vascular endothelial growth factor principally acts as the main angiogenesis factor in the early stage of human osteoblastogenesis. J Biochem 2003;133:633-639   DOI   ScienceOn
18 Paciccia DM, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, Gerstenfeld LC, Einhorn TA: Expression of angiogenic factors during distraction osteogenesis. Bone 2003;33:889-898   DOI   ScienceOn
19 Hu J, Zou S, Li J, Chen Y, Wang D, Gao Z: Temporospatial expression of vascular endothelial growth factor and basic fibroblast growth factor duringmandibular distraction osteogenesis. J Cranio-Maxillofac Surg 2003;31:238-243   DOI   ScienceOn
20 Trueta J: The role of the vessels in osteogenesis. J Bone Joint Surg Br 1963;45:402-418
21 Park BW, Kim JR, Lee JH, Byun JH: Expression of nerve growth factor and vascular endothelial growth factor in the inferior alveolar nerve after distraction osteogenesis. Int J Oral Maxillofac Surg 2006;35:624-630   DOI   ScienceOn
22 Kurdy NMG, Weiss JB, Bate A: Endothelial stimulating angiogenic factor in early fracture healing. Injury 1996;27:143-145   DOI   ScienceOn
23 Spector JA, Mehrara BJ, Greenwald JA, Saadeh PB, Steinbrech DS, Bouletreau PJ, Smith LP, Longaker MT: Osteoblast expression of vascular endothelial growth factor is modulated by the extracellular microenvironment. Am J Physiol Cell Physiol 2000;280:72-80
24 Warren SM, Mehrara BJ, Steinbrench DS, Paccione MF, Greenwald JA, Spector JA, Longaker MT: Rat mandibular distraction osteogenesis: Part III. Gradual distraction versus acute lengthening. Plast Recontr Surg 2001;107:441-453   DOI   ScienceOn
25 Hwang DU, Byun JH, Park BW, Kim JH: Expression of vascular endothelial growth factor and its receptors in the distracted periosteum after mandibular distraction osteogenesis. J Kor Maxillofac Plast Reconstr Surg 2006;28:549-558   과학기술학회마을
26 Glowacki J: Angiogenesis in fracture repair. Clin Orthop Relat Res 1998;355S:82-89   DOI
27 Decker MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW: Expression of vascular endothelial growth factors and their receptors during osteoblastic differentiation. Endocrinology 2000;141:1667-1674   DOI   ScienceOn
28 Hansen-Algenstaedt N, Algenstaedt P, Bottcher A, Joscheck C, Schwarzlon B, Schaefer C, Muller I, Koike C, Ruther W, Fink B: Bilaterally increase VEGF-levels in muscle during experimental unilateral callus distraction. J Orthop Res 2003;21:805-812   DOI   ScienceOn