The skin whitening effects of pine needle extract, hop extract and chestnut inner shell extract were evaluated both in vitro and in B 16 mouse melanoma cell lines. Each extracts significantly inhibited tyrosinase activity, dopa auto-oxidation and melanin biosynthesis in vitro and in B 16 cell lines. In vitro, hop extract inhibited melanin biosynthesis 15 times stronger than kojic acid at $10{\;}\mu\textrm{g}/ml$ concentration. Each extracts were stronger inhibitors of melanin biosynthesis than kojic acid in B 16 mouse melanoma cell at less than $4{\;}\mu\textrm{g}/ml$ concentration. These results show that extracts fo pine needle, hop and chestnut inner shell could be developed as skin whitening component of cosmetics.
International Journal of Advanced Culture Technology
/
v.7
no.4
/
pp.56-62
/
2019
Recently, research using artificial neural networks has further expanded the field of neural network optimization and automatic structuring from improving inference accuracy. The performance of the machine learning algorithm depends on how the hyperparameters are configured. Open-source hyperparameter optimization software can be an important step forward in improving the performance of machine learning algorithms. In this paper, we review open-source hyperparameter optimization softwares.
International Journal of Advanced Culture Technology
/
v.8
no.2
/
pp.297-304
/
2020
Recently, open source automatic machine learning solutions have been applied in many fields. To apply open source automated machine learning to real world problems, you need to write code with expertise in machine learning. Writing code without machine learning knowledge is challenging. To solve this problem, the automatic machine learning solutions provided by startups are made easy to use with a clean user interface. In this paper, we review automatic machine learning solutions of startups.
Song, Ye Ji;Yu, Hwan Hee;Kim, Yeon Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
Journal of Microbiology and Biotechnology
/
v.29
no.8
/
pp.1177-1183
/
2019
Grapefruit seed extract (GSE) is a safe and effective preservative that is used widely in the food industry. However, there are few studies addressing the anti-biofilm effect of GSE. In this study, the anti-biofilm effect of GSE was investigated against biofilm-forming strains of Staphylococcus aureus and Escherichia coli. The GSE minimum inhibitory concentration (MIC) for S. aureus and E. coli were $25{\mu}g/ml$ and $250{\mu}g/ml$, respectively. To investigate biofilm inhibition and degradation effect, crystal violet assay and stainless steel were used. Biofilm formation rates of four strains (S. aureus 7, S. aureus 8, E. coli ATCC 25922, and E. coli O157:H4 FRIK 125) were 55.8%, 70.2%, 55.4%, and 20.6% at $1/2{\times}MIC$ of GSE, respectively. The degradation effect of GSE on biofilms attached to stainless steel coupons was observed (${\geq}1$ log CFU/coupon) after exposure to concentrations above the MIC for all strains and $1/2{\times}MIC$ for S. aureus 7. In addition, the specific mechanisms of this anti-biofilm effect were investigated by evaluating hydrophobicity, auto-aggregation, exopolysaccharide (EPS) production rate, and motility. Significant changes in EPS production rate and motility were observed in both S. aureus and E. coli in the presence of GSE, while changes in hydrophobicity were observed only in E. coli. No relationship was seen between auto-aggregation and biofilm formation. Therefore, our results suggest that GSE might be used as an anti-biofilm agent that is effective against S. aureus and E. coli.
Woo, Yeoungju;Kim, Yumin;Ahn, Sohyun;Ko, Seoyeong;Nguyen, Hang Thi Phuong;Shin, Choonsung;Jeong, Hieyong
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.391-392
/
2021
해마다 실내 냉방기 냉매누설 문제가 고질적으로 반복되며 소비자들의 피해도 커져가고 있다. 특히 제조사와 설치 업체가 다른 경우 냉매 누수의 원인이 제품인지, 설치하자인지 책임소재를 두고 갈등을 빚는 경우가 빈번하다. 이에 더 이상 소비자들의 피해를 막기 위해 냉매누설 검출 방안 마련이 필요해 보인다. 본 연구에서는 실내 냉방기 설치 후 냉매누설 검출을 위한 별도의 하드웨어 장치 추가 없이 냉방기의 운영을 위해 설치된 센서들의 값을 이용하여 냉매누설의 유무를 판단할 수 있는 방안을 제안하는 것을 목적으로 한다. 데이터 분석을 위하여 제조사의 제품 출하 전 현장 테스트 단계에서 측정한 온도값, 전류값, 습도값을 취합하여 데이터 셋을 구축하였다. 이때 자동화된 머신러닝(AutoML)을 이용하여 데이터의 80%를 훈련 데이터로 20%를 테스트 데이터로 사용하여 냉매량 80%는 1, 그 이하는 0으로 훈련시켰다. 구축한 데이터 셋을 이용하여 훈련시킨 결과 99% 정확도로 냉매누설 검출을 분별할 수 있었다. 또한 냉매누설과 관련성이 높은 중요 특징 4개를 추출할 수 있었다. 본 연구를 통하여 별도의 하드웨어 장치 추가 없이 소프트웨어적인 접근 방법으로 문제를 해결할 수 있는 feasibility를 확인할 수 있었다.
Using a cloud-based vertex AI platform that can develop an artificial intelligence learning model without coding, this study easily developed an artificial intelligence learning model by the non-professional general public and confirmed its clinical applicability. Nine dental diseases and 2,999 root disease X-ray images released on the Kaggle site were used for the learning data, and learning, verification, and test data images were randomly classified. Image classification and multi-label learning were performed through hyper-parameter tuning work using a learning pipeline in vertex AI's basic learning model workflow. As a result of performing AutoML(Automated Machine Learning), AUC(Area Under Curve) was found to be 0.967, precision was 95.6%, and reproduction rate was 95.2%. It was confirmed that the learned artificial intelligence model was sufficient for clinical diagnosis.
Chun Bong-Kyung;Jin Hee-Jeong;Lee Pyung-Jun;Cho Hwan-Gue
Journal of KIISE:Software and Applications
/
v.33
no.2
/
pp.143-153
/
2006
Microarray which enables us to obtain hundreds and thousands of expression of gene or genotype at once is an epoch-making technology in comparative analysis of genes. First of all, we have to measure the intensity of each gene in an microarray image from the experiment to gain the expression level of each gene. But it is difficult to analyze the microarray image in manual because it has a lot of genes. Meta-gridding method and various auto-gridding methods have been proposed for this, but thew still have some problems. For example, meta-gridding requires manual-work due to some variations in spite of experiment in same microarray, and auto-gridding nay not carried out fully or correctly when an image has a lot of noises or is lowly expressed. In this article, we propose Hierarchical Grid Alignment algorithm for new methodology combining meta-gridding method with auto-gridding method. In our methodology, we necd a meta-grid as an input, and then align it with the microarray image automatically. Experimental results show that the proposed method serves more robust and reliable gridding result than the previous methods. It is also possible for user to do more reliable batch analysis by using our algorithm.
Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.7
/
pp.1773-1793
/
2023
Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.
Most of the match-3 puzzle games supports automatic play using the MCTS algorithm. However, implementing reinforcement learning agents is not an easy job because it requires both the knowledge of machine learning and the way of complex interactions within the development environment. This study proposes a method in which we can easily design reinforcement learning agents and implement game play agents by applying PPO(Proximal Policy Optimization) algorithms. And we could identify the performance was increased about 44% than the conventional method. The tools we used are the Unity 3D game engine and Unity ML SDK. The experimental result shows that agents became to learn game rules and make better strategic decisions as experiments go on. On average, the puzzle gameplay agents implemented in this study played puzzle games better than normal people. It is expected that the designed agent could be used to speed up the game level design process.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
v.50
no.4
/
pp.216-221
/
2024
Objectives: This study aimed to develop and validate a model to predict the need for intensive care unit (ICU) admission in patients with dental infections using an automated machine learning (ML) program called H2O-AutoML. Materials and Methods: Two models were created using only the information available at the initial examination. Model 1 was parameterized with only clinical symptoms and blood tests, excluding contrast-enhanced multi-detector computed tomography (MDCT) images available at the initial visit, whereas model 2 was created with the addition of the MDCT information to the model 1 parameters. Although model 2 was expected to be superior to model 1, we wanted to independently determine this conclusion. A total of 210 patients who visited the Department of Oral and Maxillofacial Surgery at the Dankook University Dental Hospital from March 2013 to August 2023 was included in this study. The patients' demographic characteristics (sex, age, and place of residence), systemic factors (hypertension, diabetes mellitus [DM], kidney disease, liver disease, heart disease, anticoagulation therapy, and osteoporosis), local factors (smoking status, site of infection, postoperative wound infection, dysphagia, odynophagia, and trismus), and factors known from initial blood tests were obtained from their medical charts and retrospectively reviewed. Results: The generalized linear model algorithm provided the best diagnostic accuracy, with an area under the receiver operating characteristic values of 0.8289 in model 1 and 0.8415 in model 2. In both models, the C-reactive protein level was the most important variable, followed by DM. Conclusion: This study provides unprecedented data on the use of ML for successful prediction of ICU admission based on initial examination results. These findings will considerably contribute to the development of the field of dentistry, especially oral and maxillofacial surgery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.