• 제목/요약/키워드: Auto-modeling process

검색결과 91건 처리시간 0.032초

Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines

  • Kim, Yong-Mo;Lee, Joon-Kyu;Ahn, Jae-Hyun;Kim, Seong-Ku
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.1009-1018
    • /
    • 2002
  • The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOx formation including thermal NO path, prompt and nitrous 70x formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.

3D 스캐닝, 3D 모델링, 3D 프린팅 기반의 3D 시스템에 의한 시니어 평발용 인솔 제작 (Producing the insoles for flat feet of senior men using 3D systems based on 3D scanning, 3D modeling, and 3D printing)

  • 오설영;서동애
    • 복식문화연구
    • /
    • 제25권3호
    • /
    • pp.270-284
    • /
    • 2017
  • This study aimed to create 3D-printed insoles for flat-footed senior men using 3D systems. 3D systems are product-manufacturing systems that use 3-dimensional technologies like 3D scanning, 3D modeling, and 3D printing. This study used a 3D scanner (NexScan2), 3D CAD programs including Rapidform, AutoCAD, SolidWorks, Nauta+ compiling program, and a 3D printer. In order to create insoles for flat-footed senior men, we analyzed horizontal sections of 3D foot scans We selected 20 flat-footed and 20 normal-footed subjects. To make the 3D insole models, we sliced nine lines on the surface of the subjects' 3D foot scans, and plotted 144 points on the lines. We calculated the average of these 3D coordinates, then located this average within the 3D space of the AutoCAD program and created 3D sole models using the loft surface tools of the SolidWorks program. The sole models for flat feet differed from those of normal feet in the depth of the arch at the inner sideline and the big toe line. We placed the normal-footed sole model on a flat-footed sole model, and the combination of the two models resulted in the 3D insole for flat feet. We printed the 3D modeled insole using a 3D printer. The 3D printing material was an acrylic resin similar to rubber. This made the insole model flexible and wearable. This study utilized 3D systems to create 3D insoles for flat-footed seniors and this process can be applied to manufacture other items in the fashion industry as well.

전산플랫폼을 이용한 비정형 초고층 건축물 성능기반 내진설계기술의 실무적용 (Seismic Performance-based Design using Computational Platform for Structural Design of Complex-shaped Tall Building)

  • 이동훈;조창희;윤우석;강대언;김태진;김종호
    • 한국전산구조공학회논문집
    • /
    • 제26권1호
    • /
    • pp.59-67
    • /
    • 2013
  • 비정형 초고층 구조물은 골조 직교성이 해제되고, 형상이 복잡해 기존 설계방식보다 많은 문제점이 발생된다. 비정형성으로 인한 문제점은 설계안을 지속적으로 변경시켜 프로젝트의 효율성을 저하시킨다. 또한 해외프로젝트의 경우 해당업체 간 혹은 해당국가 간 의견차로 국내보다 더욱 많은 변경상황이 발생되고 있다. 따라서 지속적인 변경상황에 전산플랫폼을 사용할 경우 효율적으로 설계변경업무에 대처할 수 있다. 파라메트릭 기반의 전산플랫폼인 StrAuto를 이용할 경우 최적의 구조설계대안을 신속히 선정할 수 있다. 특히 StrAuto는 비선형 내진성능평가를 위한 해석 툴 간의 신속한 모델링 연동도 효율적으로 가능하다. 그래서 본 연구에서는 지진하중 변경에 따른 전산플랫폼을 이용한 내진성능평가 프로세스를 현재 구조설계가 진행 중인 몽골지역 최고층 빌딩 프로젝트에 적용하고 검증하려 한다.

디프 드로잉 제품의 블랭크 설계를 위한 표면적 계산 시스템의 적용 (Application of Surface Area Calculating System for Design of Blank Shape of Deep Drawing Product)

  • 박동환;최병근;박상봉;강성수
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.97-105
    • /
    • 2000
  • One of the most important steps to determine the blank shape and dimensions in deep drawing process is to calculate the surface area of the product. In general, the surface area of axisymmetric products is calculated by mathematical or graphical methods. However, in the case of non-axisymmetric products, it is difficult to calculate the exact surface area due to errors as separated components. Fortunately, it is possible for elliptical products to recognize the geometry of the product in the long side and short side by drafting in another two layers on AutoCAD software. So, in this study, a surface area calculating system is constructed for a design of blank shape of deep drawing products. This system consists of input geometry recognition module and three dimensional modeling module, respectively. The suitability of this system is verified by applying to a real deep drawing product. The system constructed in this study would be very useful to reduce lead time and cost for determining the blank shape and dimensions.

  • PDF

GENERALISED PARAMETERS TECHNIQUE FOR IDENTIFICATION OF SEASONAL ARMA (SARMA) AND NON SEASONAL ARMA (NSARMA) MODELS

  • M. Sreenivasan;K. Sumathi
    • Journal of applied mathematics & informatics
    • /
    • 제4권1호
    • /
    • pp.135-135
    • /
    • 1997
  • Times series modeling plays an important role in the field of engineering, Statistics, Biomedicine etc. Model identification is one of crucial steps in the modeling of an AutoRegreesive Moving Average(ARMA(p, q)) process for real world problems. Many techniques have been developed in the literature (Salas et al., McLeod et al. etc.) for the identification of an ARMA(p, q) Model. In this paper, a new technique called The Generalised Parameters Technique is formulated for seasonal and non-seasonal ARMA model identification. This technique is very simple and can e applied to any given time series. Initial estimates of the AR parameters of the ARMA model are also obtained by this method. This model identification technique is validated through many theoretical and simulated examples.

TRANSIENT FLAMELET MODELING FOR COMBUSTION PROCESSES OF HSDI DIESEL ENGINES

  • Kim, H.J.;Kang, S.M.;Kim, Y.M.;Lee, J.H.;Lee, J.K.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.129-137
    • /
    • 2006
  • The representative interactive flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the HSDI diesel engine. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the eulerian particle flamelet model using the multiple flamelets has been employed. The vaporization effects on turbulence-chemistry interaction are included in the present RIF procedure. the results of numerical modeling using the rif concept are compared with experimental data and with numerical results of the widely-used ad-hoc combustion model. Numerical results indicate that the rif approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay characteristics as well as the pollutant formation in the HSDI diesel engines.

컴퓨터 그래픽스를 이용한 경관 시뮬레이션에 있어서 지형상에 구조물 형상 입력과 가시화 방법에 관한 연구 (A Study on the Data Input and Visualization of Sturctual Form on Topographic Relief in the Landscape Simulation Thchnique using CG)

  • 조동범
    • 한국조경학회지
    • /
    • 제24권3호
    • /
    • pp.29-41
    • /
    • 1996
  • The purposes of this study were to develope some techniques which can be used in the landscape simulation process using PC based computer grahics. As a result, a couple of utilities were programmed in AutoLISP language. The one(DSLINE.LSP) is to digitize 2-dimensional structuer forms in the interactive mode considering error handling, and the other one (IMPOST.LSP) is for superimposing and visualizing the digitized plan data to 3-dimension solids & surfaces referring to topographic elevations of meshes in digital terrain model. By applying utilities to present site, the followings may be described. 1) The utility DSLINE.LSP for digitizing simplified building structure form were proved to be easy to input data of polygons including orthogonal edges by handling user coordinates system and checking invalid intersection and default colsing. 2) IMPOST.LSP utility for superimposing and visualizing tool were proved to be more complicated and speedy in calculating process compared with a practical application of modeling tool before rendering process in landscape simulation of built environment on topographic relief, on specially mesospace level of assessment.

  • PDF

검출력 향상된 자기상관 공정용 관리도의 강건 설계 : 반도체 공정설비 센서데이터 응용 (Power Enhanced Design of Robust Control Charts for Autocorrelated Processes : Application on Sensor Data in Semiconductor Manufacturing)

  • 이현철
    • 산업경영시스템학회지
    • /
    • 제34권4호
    • /
    • pp.57-65
    • /
    • 2011
  • Monitoring auto correlated processes is prevalent in recent manufacturing environments. As a proactive control for manufacturing processes is emphasized especially in the semiconductor industry, it is natural to monitor real-time status of equipment through sensor rather than resultant output status of the processes. Equipment's sensor data show various forms of correlation features. Among them, considerable amount of sensor data, statistically autocorrelated, is well represented by Box-Jenkins autoregressive moving average (ARMA) model. In this paper, we present a design method of statistical process control (SPC) used for monitoring processes represented by the ARMA model. The proposed method shows benefits in the power of detecting process changes, and considers robustness to ARMA modeling errors simultaneously. We prove benefits through Monte carlo simulation-based investigations.

PI 제어기의 입력제한을 이용한 사출 성형기 온도제어 (Temperature Control of Injection Molding Machine using PI Controller with Input Restriction)

  • 장유진
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.604-610
    • /
    • 2007
  • Injection molding is the most common method of shaping plastic resins for manufacturing a variety of parts. This injection molding is accomplished by injection molding machines (IMM) which consists of a hewer, a reciprocating screw, barrel assembly, and an injection nozzle. The plastic resin is fed to the machine through the hopper and it should be heated to the target melting temperature, which depends on material properties, as closely as possible with very small temperature overshoot in the barrel. Since the barrel, which has temperature dependent specific heat and thermal conductivity in the operating temperature range, is heated by the several electric heater bands, it is not an easy task to control the temperature of the barrel owing to the interference of neighboring heaters and its material properties. Though PID controller with auto-tuning capability is widely adopted in the nm, the auto-tuning process should be carried out whenever the operating temperature is changed significantly. Recently, though the predictive controller is developed and shows good performance, it has drawbacks: 1. Since the heat transfer modeling process is very complicated and should be carried out again when the barrel is changed, it is somewhat inappropriate in the field. 2. The controller performance is not validated in whole operating temperature range. In this paper, cascade type simple PI controller with input restriction is proposed to find the possibility of controlling the barrel temperature in the whole operating temperature range. It is shown by experiment that the proposed controller shows good performance. This result can be applied to design of PI controller with auto-tuning capability.

자동차 가상생산 기술 적용(VII) : 프레스 디지털 가상공장의 구축과 활용 (Virtual Manufacturing for an Automotive Company(VII) : Construction and Application of a Virtual Press Shop)

  • 국승호;이상석;소순일;노상도;김희선;심경보;김주열
    • 산업공학
    • /
    • 제21권3호
    • /
    • pp.322-332
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital model representing the physical and logical schema and the behavior of real manufacturing system, and it includes product, resources, processes and plant. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated digital virtual factory of a Korean automotive company's press shop. For efficient constructions of a digital virtual factory useful to kinematic simulations and visualizations, we analyzed entire business process and detailed activities of press engineering. Also, we evaluated geometries, structures, characteristics and motions of a plant and machines in press shop. The geometric model and related data of a virtual press shop are built and managed by a modeling standard defined in this paper. The virtual manufacturing simulation of press machines is conducted to evaluate kinematic motions, cycle time and locations of components using geometric models and related data. It's for interference checks and productivity improvements. We expect that this virtual press shop helps us to achieve great savings in time and cost in many manufacturing preparation activities in the new car development process of automotive companies.