• 제목/요약/키워드: Auto-Classification

검색결과 167건 처리시간 0.021초

카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발 (Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment)

  • 김유진;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.

식물학문헌을 위한 자동분류시스템의 개발 (Developing an Automatic Classification System for Botanical Literatures)

  • 김정현;이경호
    • 한국도서관정보학회지
    • /
    • 제32권4호
    • /
    • pp.99-117
    • /
    • 2001
  • 본 연구는 분류자동화를 위해 이미 연구된 바 있는 농학 및 의학분야의 AutoBC 시스템에 대한 계속적인 연구의 일환으로 식물학분야의 문헌에 대해 분류자동화가 가능한지의 여부를 CC의 원리를 응용하여 실험 및 검증한 것이다. 분류자동화를 위한 데이터베이스는 원통형과 행렬식의 원리에 의해 설계되었으며, 문헌의 표제나 키워드를 입력하여 자동적인 주제인지 및 분류기호가 생성될 수 있는 윈도우용 자동분류시스템을 새로이 개발하여 실험하였다.

  • PDF

심전도 신호의 자동분석을 위한 자기회귀모델 변수추정과 패턴분류 (The Auto Regressive Parameter Estimation and Pattern Classification of EKS Signals for Automatic Diagnosis)

  • 이윤선;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권1호
    • /
    • pp.93-100
    • /
    • 1988
  • The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.

  • PDF

자동차보험 과실기준 기반 자동차사고유형 체계화에 관한 연구 (A Study on the Classification of the Car Accidents Types based on the Negligence Standards of Auto Insurance)

  • 박요한;박원필;김승기
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.53-59
    • /
    • 2021
  • According to the Korean Traffic Accident Analysis System (TAAS), more than 200,000 traffic accidents occur every year. Also, the statistics including auto insurance companies data show 1.3 million traffic accidents. In the case of TAAS, the types of traffic accidents are simply divided into four; frontal collision, side collision, rear collision, and rollover. However, more detailed information is needed to assess for advanced driver assist systems at intersections. For example, directional information is needed, such as whether the vehicle in the car accident way in a straight or a left turn, etc. This study intends to redefine the type of accident with the more clear driving direction and path by referring to the Negligence standards used in automobile insurance accidents. The standards largely divide five categories of car-to-car/motorcycle /pedestrian/cyclist, and highway, and the each category is classified into dozens of types by status of the traffic signal, conflict situations. In order to present more various accident types for auto insurance accidents, the standards are reclassified driving direction and path of vehicles from crash situations. In results, the car-to-car accidents are classified into 33 accident types, car-to-pedestrian accidents have 19 accident types, car-to-motorcycle accidents have 38 accident types, and car-to-cyclist accidents are derived into 26 types.

DEVELOPMENT OF INFORMATION MANAGEMENT SYSTEM FOR BUILDING MATERIAL

  • Choong Han Han;Ki Bum Ju
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1383-1387
    • /
    • 2009
  • As information technologies in construction field get developed, various studies and projects are in progress for improvement of construction industry. Meanwhile, web-basis online system for building materials is tending upward. However, most of the informations about classification system for building materials and specifications are not systematic yet. Most field staffs have some troubles in making full use of the material information, repeating inefficient works from constructional design to the maintenance of it. This study designed auto-categorization system classified by materials, multi-search engines, auto-converting/creating electronic catalog as well as RFID search support to provide standardized building materials information.

  • PDF

디지털 영상처리와 신경망을 이용한 2차원 평면 물체 품질 제어 (Quality Control of Two Dimensions Using Digital Image Processing and Neural Networks)

  • 김진환;서보혁;박성욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2580-2582
    • /
    • 2004
  • In this paper, a Neural Network(NN) based approach for classification of two dimensions images. The proposed algorithm is able to apply in the actual industry. The described diagnostic algorithm is presented to defect surface failures on tiles. A way to get data for a digital image process is several kinds of it. The tiles are scanned and the digital images are preprocessed and classified using neural networks. It is important to reduce the amount of input data with problem specific preprocessing. The auto-associative neural network is used for feature generation and selection while the probabilistic neural network is used for classification. The proposed algorithm is evaluated experimentally using one hundred of the real tile images. Sample image data to preprocess have histogram. The histogram is used as input value of probabilistic neural network. Auto-associative neural network compress input data and compressed data is classified using probabilistic neural network. Classified sample images are determined by human state. So it is intervened human subjectivity. But digital image processing and neural network are better than human classification ability. Therefore it is very useful of quality control improvement.

  • PDF

평활된 주기도를 이용한 강수량자료의 군집화 (Classification of Precipitation Data Based on Smoothed Periodogram)

  • 박만식;김희영
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.547-560
    • /
    • 2008
  • 스펙트럼 밀도함수(spectral density function)는 시계열 자료가 정상성(stationarity)을 만족하는 경우에 주파수 영역(frrqllrnFr domain)에서 시계열 자료의 자기공분산함수(auto-covariance function)을 결정짓는 함수이고, 평활된 주기도(smoothed periodogram)는 스펙트럼 밀도함수의 일치 추정량(consistent estimator)이 됨이 잘 알려져 있다. 본 연구에서는 시계열 자료를 평활된 주기도를 이용하여 군집화하는 방법을 소개한다. 최근 김희영과 박만식 (2007)의 연구에 의하면 이 거리는 정상시계열들을 효율적으로 분류하고 있음을 알 수 있다. 본 연구는 시계열 자료를 분류하는데 사용된 기존의 거리들을 간략히 소개하고, 우리나라 22개 지역에서 1987년 1월부터 2007년 12월까지 측정한 월별 강수량 자료를 대상으로 평활된 주기도 거리를 이용하여 지역을 군집화한다.

고객관계관리를 위한 고객 분류 프레임워크 개발 : 온라인 자동차보험을 중심으로 (Developing A Framework of Customer Classification for Customer Relationship Management : Focusing on Online Auto Insurance)

  • 임세헌
    • 디지털융복합연구
    • /
    • 제10권5호
    • /
    • pp.67-78
    • /
    • 2012
  • 최근 온라인 자동차보험에 대한 고객의 관심이 급증하고 있다. 그 이유는 경제성 측면에서 온라인 자동차보험이 소비자들에게 유용성을 제공해주기 때문이다. 오프라인에서 판매하는 자동차보험은 서비스 상품으로 온라인에서 판매하는 자동차보험 상품에 비해 상대적으로 높은 가격을 형성하고 있다. 이러한 특징에 힘입어 가격이 저렴한 온라인 자동차보험은 소비자들에게 큰 인기를 얻고 있다. 그렇기 때문에 소비자들은 온라인 자동차보험 상품 가격에 많은 관심을 가지고 있고, 자동차보험 상품 구입에 신중한 선택을 하고 있다. 본 연구에서는 소비자들이 온라인 자동차보험에 대해 느끼는 인지된 이익과 가격 수용성을 중심으로 $2{\times}2$ 매트릭스로 구성해 온라인 자동차보험 고객군을 온라인 수용형, 경제성 추구형, 편리 추구형, 신중 접근형으로 구분하였다. 이에 따라 본 연구에서는 온라인 자동차보험 웹사이트의 인지된 이용 용이성, 유용성, 태도, 구매의도에 사이의 관계를 분석하였다. 본 연구결과는 온라인에서 자동차보험 상품을 판매하는 기업들에게 소비자의 온라인 자동차보험 구매의도를 강화하기 위한 고객관계관리 전략 수립에 있어 유용한 시사점을 제공해 줄 것이다.

웹 방화벽 로그 분석을 통한 공격 분류: AutoML, CNN, RNN, ALBERT (Web Attack Classification via WAF Log Analysis: AutoML, CNN, RNN, ALBERT)

  • 조영복;박재우;한미란
    • 정보보호학회논문지
    • /
    • 제34권4호
    • /
    • pp.587-596
    • /
    • 2024
  • 사이버 공격, 위협이 복잡해지고 빠르게 진화하면서, 4차 산업 혁명의 핵심 기술인 인공지능(AI)을 이용하여 사이버 위협 탐지 시스템 구축이 계속해서 주목받고 있다. 특히, 기업 및 정부 조직의 보안 운영 센터(Security Operations Center)에서는 보안 오케스트레이션, 자동화, 대응을 뜻하는 SOAR(Security Orchestration, Automation and Response) 솔루션 구현을 위해 AI를 활용하는 사례가 증가하고 있으며, 이는 향후 예견되는 근거를 바탕으로 한 지식인 사이버 위협 인텔리전스(Cyber Threat Intelligence, CTI) 구축 및 공유를 목적으로 한다. 본 논문에서는 네트워크 트래픽, 웹 방화벽(WAF) 로그 데이터를 대상으로 한 사이버 위협 탐지 기술 동향을 소개하고, TF-IDF(Term Frequency-Inverse Document Frequency) 기술과 자동화된 머신러닝(AutoML)을 이용하여 웹 트래픽 로그 공격 유형을 분류하는 방법을 제시한다.

LSTM/RNN을 사용한 감정인식을 위한 스택 오토 인코더로 EEG 차원 감소 (EEG Dimensional Reduction with Stack AutoEncoder for Emotional Recognition using LSTM/RNN)

  • ;임창균
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.717-724
    • /
    • 2020
  • 감성 컴퓨팅은 인간의 상호 작용에서 중요한 역할을 하기 때문에 인간을 인식하는 인공 지능을 통해 감정을 이해하고 식별한다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환을 잘 이해함으로써 감정과 관련된 문제들을 잘 관리할 수 있을 것이다. 이러한 문제들을 해결하기 위해 감정 인식을 위한 다양한 연구가 수행되었는데 기계학습을 적용하는데 있어서는 알고리즘의 복잡성을 줄이고 정확도를 향상시키기 위한 노력이 필요하다. 본 논문에서는 이러한 노력중의 하나로 Stack AutoEncoder (SAE)를 이용하여 차원을 감소하는 방법과 Long-Short-Term-Memory/Recurrent Neural Networks (LSTM / RNN) 분류를 이용한 감성 분류에 대해 연구한 결과를 제시한다. 제안된 방법은 모델의 복잡성을 줄이고 분류기의 성능을 크게 향상시킨 결과를 가져왔다.