• 제목/요약/키워드: Auto detection

검색결과 358건 처리시간 0.027초

웨이브렛 변환을 이용한 맥파의 인식에 관한 연구 (A Study on the Recognition of Human Pulse Using Wavelet Transform)

  • 길세기;김낙환;박승환;민홍기;흥승홍
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.269-272
    • /
    • 2000
  • It is need to develop and apply a human pulse diagnosis system providing a quantitative and automatic analysis in the the oriental medicine. In order to analyze quantitatively the characteristic of pulsation, each of points had to be recognized accurately notifying the existence and the position of feature point in the wave form. And getting the period of human pulse. Thus, in this paper, it is proposed the preprocessing method of human pulse and the detection method of period by Wavelet Transformation. The human pulse is seprated from each band through Wavelet Transformation and feature points can be recognized through over the fact, and then the parameter of proposed Mac-Jin parameter is measured. Commonly, Human pulse signal has often various noises which are baseline drift, high frequency noise and so on. So it is significant to remove that noises. Thus, in this paper, the one period of human pulse is deciede and the feature points are detected after doing the preprocessing by wavelet transformation. As a result, it could be confirmed that this method is effective as a real program for the auto-diagnosis of human pulse.

  • PDF

동시통화 및 주변 잡음을 고려한 핸즈프리 환경의 반향제거기 (An Acoustic Echo Canceler for Hands-Free Telephony, Considering Double Talk and Environment Noise)

  • 김현태;이찬희;박장식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.471-473
    • /
    • 2009
  • 본 논문에서는 핸즈프리 전화통신을 위한 동시통화(double-talk) 및 잡음에 강건한 반향제거 시스템을 제안한다. 제안하는 반향제거 시스템은 동시통화 상황을 판별하기 위해 마이크 입력신호와 추정한 마이크 입력신호의 분산을 기반으로한 동시통화 검출 알고리즘을 사용하고 반향 경로 추정을 위한 적응 필터는 잔여반향 오차 전력과 AP 알고리즘의 투영차수를 곱하여 입력 신호의 자기공분산 행렬에 더해 정규화시킨 알고리즘을 적용한다. 컴퓨터 시뮬레이션을 통한 동시통화 및 주변 잡음이 큰 핸즈프리 환경에서 제안하는 방법이 AIC(acoustic interference cancellation) 측면에서 우수함을 보인다.

  • PDF

SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축 (The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm)

  • 양희종;장길상
    • 대한안전경영과학회지
    • /
    • 제23권3호
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.

인공지능 기반의 자동차사고 감지 시스템 적용 사례 분석 (A Review of AI-based Automobile Accident Prevention Systems)

  • 최재경;공찬우;임성훈
    • 대한안전경영과학회지
    • /
    • 제22권1호
    • /
    • pp.9-14
    • /
    • 2020
  • Artificial intelligence (AI) has been applied to most industries by enhancing automation and contributing greatly to efficient processes and high-quality production. This research analyzes the applications of AI-based automobile accident prevention systems. It deals with AI-based collision prevention systems that learn information from various sensors attached to cars and AI-based accident detection systems that automatically report accidents to the control center in the event of a collision. Based on the literature review, technological and institutional changes are taking place at the national levels, which recognize the effectiveness of the systems. In addition, start-ups at home and abroad as well as major car manufacturers are in the process of commercializing auto parts equipped with AI-based collision prevention technology.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

Malware Classification using Dynamic Analysis with Deep Learning

  • Asad Amin;Muhammad Nauman Durrani;Nadeem Kafi;Fahad Samad;Abdul Aziz
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.49-62
    • /
    • 2023
  • There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.

Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy

  • Su‑Been Yoo;Seong‑Hun Yun;Ah‑Jin Jo;Sang‑Joon Cho;Haneol Cho;Jun‑Ho Lee;Byoung‑Woon Ahn
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.1.1-1.8
    • /
    • 2022
  • As semiconductor device architecture develops, from planar field-effect transistors (FET) to FinFET and gate-all-around (GAA), there is an increased need to measure 3D structure sidewalls precisely. Here, we present a 3-Dimensional Atomic Force Microscope (3D-AFM), a powerful 3D metrology tool to measure the sidewall roughness (SWR) of vertical and undercut structures. First, we measured three different dies repeatedly to calculate reproducibility in die level. Reproducible results were derived with a relative standard deviation under 2%. Second, we measured 13 different dies, including the center and edge of the wafer, to analyze SWR distribution in wafer level and reliable results were measured. All analysis was performed using a novel algorithm, including auto fattening, sidewall detection, and SWR calculation. In addition, SWR automatic analysis software was implemented to reduce analysis time and to provide standard analysis. The results suggest that our 3D-AFM, based on the tilted Z scanner, will enable an advanced methodology for automated 3D measurement and analysis.

전이학습을 활용한 시설물 균열 탐지 모델 설계 (Design of Facility Crack Detection Model using Transfer Learning)

  • 김준영;박준;박성욱;이한성;정세훈;심춘보
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.827-829
    • /
    • 2021
  • 현대사회의 시설물 중 다수가 콘크리트를 사용하여 건설되었고, 재료적 성질로 인해 균열, 박락, 백태 등의 손상이 발생하고 있고 시설물 관리가 요구되고 있다. 하지만, 현재 시설물 관리는 사람의 육안 점검을 정기적으로 수행하고 있으나, 높은 시설물이나 맨눈으로 확인할 수 없는 시설물의 경우 관리가 어렵다. 이에 본 논문에서는 다양한 영상장비를 활용해 시설물의 이미지에서 균열을 분류하는 알고리즘을 제안한다. 균열 분류 알고리즘은 산업 이상 감지 데이터 세트인 MVTec AD 데이터 세트를 사전 학습하고 L2 auto-encoder를 사용하여 균열을 분류한다. MVTec AD 데이터 세트를 사전학습시킴으로써 균열, 박락, 백태 등의 특징을 학습시킬 수 있을 것으로 기대한다.

수학적 변환과 심층 생성 모델을 활용한 DMMP와 2-CEES의 모의 라만 분광 생성 (Generating Synthetic Raman Spectra of DMMP and 2-CEES by Mathematical Transforms and Deep Generative Models)

  • 박성원;정보성;김홍중
    • 한국군사과학기술학회지
    • /
    • 제26권5호
    • /
    • pp.422-430
    • /
    • 2023
  • To build an automated system detecting toxic chemicals from Raman spectra, we have to obtain sufficient data of toxic chemicals. However, it usually costs high to gather Raman spectra of toxic chemicals in diverse situations. Tackling this problem, we develop methods to generate synthetic Raman spectra of DMMP and 2-CEES without actual experiments. First, we propose certain mathematical transforms to augment few original Raman spectra. Then, we train deep generative models to generate more realistic and diverse data. Analyzing synthetic Raman spectra of toxic chemicals generated by our methods through visualization, we qualitatively verify that the data are sufficiently similar to original data and diverse. For conclusion, we obtain a synthetic dataset of DMMP and 2-CEES with the proposed algorithm.