• Title/Summary/Keyword: Auto detection

Search Result 354, Processing Time 0.031 seconds

A Study on the Design of Sensor Fault Detection System Using AANN(AutoAssociative Neural Network) (AANN 기법을 이용한 온-라인 센서 고장 검출 알고리즘 개발에 관한 연구)

  • Han, Yun-Jong;Bae, Sang-Wook;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2268-2271
    • /
    • 2002
  • NLPCA(Nonlinear principal component analysis is a novel technique for multivariate data analysis, similar to the weil-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(AutoAssociative Neural Network) which performs the identity mapping. In this work, a sensor fault defection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from Saemangeum measurement stations is executed.

  • PDF

Development of System based on Digital Image Processing for Precision Measurement of Micro Spring (초소형 스프링 정밀 측정을 위한 디지털 영상 처리 시스템 개발)

  • 표창률;강성훈;전병희
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.620-627
    • /
    • 2002
  • The purpose of this paper is the development of an automated measurement system for micro spring based on the digital image processing technique. This micro spring can be used in various engineering applications such as filament, load bearing springs, hard disk suspension and many others. Main functionality of the micro spring inspection system is to measure the representative pitch of the micro spring. The derivative operators are used for edge detection in gray level image. Measurement system developed in this paper consisted of new auto feeding mechanism to take advantage of air pressure. In the process of development of the micro spring inspection system based on the image processing and analysis, strong background technology and know-how have been accumulated to measure micro mechanical parts.

Study on the Extraction of Nuclear Power Plant Failure Patterns using AAKR (AAKR을 이용한 원자력 발전소 고장 패턴 추출에 관한 연구)

  • Park, Kibeom;Ahn, Hongmin;Kang, Seongki;Chai, Jangbom
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • In this paper, we investigate the feasibility of a strategy of failure detection and identification. The point of proposed strategy includes a pattern extraction approach for failure identification using Auto-Associative Kernel Regression (AAKR). We consider a simulation data concerning 605 signals of a Generic Pressurized Water Reactor(GPWR). In the application, the reconstructions are provided by a set of AAKR models, whose input signals have been selected by Correlation Analysis(CA) for the identification of the groups. The failure pattern is extracted by analyzing the residuals of observations and reconstructions. We present the possibility of extraction of patterns for six failure.

GNSS Signal Design Trade-off Between Data Bit Duration and Spreading Code Period for High Sensitivity in Signal Detection

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.87-94
    • /
    • 2017
  • GNSS modernization and development is in progress throughout the globe, and it is focused on the addition of a new navigation signal. Accordingly, for the next-generation GNSS signals that have been developed or are under development, various combinations that are different from the existing GNSS signal structures can be introduced. In this regard, to design an advanced signal, it is essential to clearly understand the effects of the signal structure and design variables. In the present study, the effects of the GNSS spreading code period and GNSS data bit duration (i.e., signal design variables) on the signal processing performance were analyzed when the data bit transition was considered, based on selected GNSS signal design scenarios. In addition, a method of utilizing the obtained result for the design of a new GNSS signal was investigated.

Implementation and Validation of Traffic Light Recognition Algorithm for Low-speed Special Purpose Vehicles in an Urban Autonomous Environment (저속 특장차의 도심 자율주행을 위한 신호등 인지 알고리즘 적용 및 검증)

  • Wonsub, Yun;Jongtak, Kim;Myeonggyu, Lee;Wongun, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.6-15
    • /
    • 2022
  • In this study, a traffic light recognition algorithm was implemented and validated for low-speed special purpose vehicles in an urban environment. Real-time image data using a camera and YOLO algorithm were applied. Two methods were presented to increase the accuracy of the traffic light recognition algorithm, and it was confirmed that the second method had the higher accuracy according to the traffic light type. In addition, it was confirmed that the optimal YOLO algorithm was YOLO v5m, which has over 98% mAP values and higher efficiency. In the future, it is thought that the traffic light recognition algorithm can be used as a dual system to secure the platform safety in the traffic information error of C-ITS.

Structural damage detection based on changes of wavelet transform coefficients of correlation functions

  • Sadeghian, Mohsen;Esfandiari, Akbar;Fadavie Manochehr
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.157-177
    • /
    • 2022
  • In this paper, an innovative finite element updating method is presented based on the variation wavelet transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been considered for the studied structure. The parameter estimation results prove the high accuracy of the method considering measurement and mass modeling errors.

Development of Rotating Equipment Anomaly Detection Algorithm based-on Artificial Intelligence (인공지능 기반 회전기기 이상탐지 알고리즘 개발)

  • Jeon, Yechan;Lee, Yonghyun;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.57-60
    • /
    • 2021
  • 본 논문에서는 기지 설비 중 주요 회전기기인 펌프의 이상탐지 알고리즘을 제안한다. 현재 인공지능을 활용하여 생산현장을 혁신하고자 하는 시도가 진행되고 있으나 외산 솔루션에 대한 의존도가 높은 것에 비해 국내 실정에 맞지 않는 경우가 많다. 이에 따라, 선행 연구를 통해 국내 실정에 맞는 인공지능 기술 도입이 필요하다. 본 연구에서는 VAE(Variational Auto Encoder) 알고리즘을 활용해 회전기기의 고장을 진단하는 알고리즘을 개발하였다. 본 연구 수행을 통한 회전기기의 고장 예지·진단 시스템 개발로 설비의 이상 징후 포착, 부품의 교환 시기 등 보수 일정을 예측하고 최종적으로 이를 통한 설비 가동의 효율 증대와 에너지 비용 감소의 효과를 기대한다.

  • PDF

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

An Experimental Study on AutoEncoder to Detect Botnet Traffic Using NetFlow-Timewindow Scheme: Revisited (넷플로우-타임윈도우 기반 봇넷 검출을 위한 오토엔코더 실험적 재고찰)

  • Koohong Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.687-697
    • /
    • 2023
  • Botnets, whose attack patterns are becoming more sophisticated and diverse, are recognized as one of the most serious cybersecurity threats today. This paper revisits the experimental results of botnet detection using autoencoder, a semi-supervised deep learning model, for UGR and CTU-13 data sets. To prepare the input vectors of autoencoder, we create data points by grouping the NetFlow records into sliding windows based on source IP address and aggregating them to form features. In particular, we discover a simple power-law; that is the number of data points that have some flow-degree is proportional to the number of NetFlow records aggregated in them. Moreover, we show that our power-law fits the real data very well resulting in correlation coefficients of 97% or higher. We also show that this power-law has an impact on the learning of autoencoder and, as a result, influences the performance of botnet detection. Furthermore, we evaluate the performance of autoencoder using the area under the Receiver Operating Characteristic (ROC) curve.

Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection (강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool)

  • Jeon, MyungHwan;Lee, Yeongjun;Shin, Young-Sik;Jang, Hyesu;Yeu, Taekyeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.