• 제목/요약/키워드: Auto Recognition

검색결과 175건 처리시간 0.032초

Cepstrum 계수와 Frequency Sensitive Competitive Learning 신경회로망을 이용한 한국어 인식. (Korean Digit Recognition Using Cepstrum coefficients and Frequency Sensitive Competitive Learning)

  • 이수혁;조성원;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.329-331
    • /
    • 1994
  • In this paper, we present a speaker-dependent Korean Isolated digit recognition system. At the preprocessing step, LPC cepstral coefficients are extracted from speech signal, and are used as the input of a Frequency Sensitive Competitive Learning(FSCL) neural network. We carried out the postprocessing based on the winning-neuron histogram. Experimetal results Indicate the possibility of commercial auto-dial telephones.

  • PDF

Gated Recurrent Unit 기법을 활용한 구조 안전성 평가 방법 (Evaluation Method of Structural Safety using Gated Recurrent Unit)

  • 강정호
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.183-193
    • /
    • 2024
  • Recurrent Neural Network technology that learns past patterns and predicts future patterns using technology for recognizing and classifying objects is being applied to various industries, economies, and languages. And research for practical use is making a lot of progress. However, research on the application of Recurrent Neural Networks for evaluating and predicting the safety of mechanical structures is insufficient. Accurate detection of external load applied to the outside is required to evaluate the safety of mechanical structures. Learning of Recurrent Neural Networks for this requires a large amount of load data. This study applied the Gated Recurrent Unit technique to examine the possibility of load learning and investigated the possibility of applying a stacked Auto Encoder as a way to secure load data. In addition, the usefulness of learning mechanical loads was analyzed with the Gated Recurrent Unit technique, and the basic setting of related functions and parameters was proposed to secure accuracy in the recognition and prediction of loads.

분산 음성 인식 시스템을 위한 특징 계수 양자화 방식 설계 (Design of a Quantization Algorithm of the Speech Feature Parameters for the Distributed Speech Recognition)

  • 이준석;윤병식;강상원
    • 한국음향학회지
    • /
    • 제24권4호
    • /
    • pp.217-223
    • /
    • 2005
  • 본 논문에서는 분산 음성 인식 시스템에서 사용되는 멜켑스트럼 계수를 양자화 하기 위하여 예측 구조를 갖는 BC-TCQ 양자화기를 제안하였다. 분산 음성 인식 시스템을 위한 효율적인 멜켑스트럼 계수 양자화기를 설계하기 위하여, 인접 프레임간의 높은 상관도를 이용한 1차 AR 예측 필터를 적용하였다. 그리고 예측 필터에 의해서 구해지는 예측 에러 벡터는 BC-TCQ를 사용하여 양자화를 수행하였다. 본 연구에서 제안된 예측 BC-TCQ멜켑스트럼 계수 양자화기는 분산 음성 인식 시스템을 위해 ETSI 규격에서 사용되는 split VQ 멜켑스트럼 계수 양자화 방식보다 cepstral distortion (CD) 측면에서 훨씬 좋은 성능을 보이며, 인코딩 연산 복잡도 및 메모리 요구량에서도 더 유리하다.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

3차원 형상인식 기법을 이용한 전기제품의 프로그레시브 가공에 관한 연구 (A Study for Progressive Working of Electronic Products by the using 3-D Shape Recognition Method)

  • 김영민;김재훈;송성우;김철;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.591-594
    • /
    • 2000
  • This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout and die layout module. Based on knowledge-based rules, the system is designed by considering several factors such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing generated by the piercing processes with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer for progressive working of electronic products to be more efficient in this field.

  • PDF

표적 구분을 위한 ISAR 영상 기법에 대한 연구 (A Study on ISAR Imaging Algorithm for Radar Target Recognition)

  • 박종일;김경태
    • 한국전자파학회논문지
    • /
    • 제19권3호
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) 영상은 표적에 대한 RCS(Radar Cross Section)를 2차원 공간에 표현하며, 표적구분에 이용될 수 있다. 2차원 IFFT(Inverse fast Fourier Transform)를 이용하여 쉽고 빠르게 ISAR 영상을 만들 수 있다. 하지만 IFFT를 이용하여 만든 ISAR 영상은 측정된 주파수 대역 폭과 각도 영역이 작아질 경우 해상도가 떨어지게 된다. 이를 해결하기 위해 AR(Auto Regressive), MUSIC(Multiple SIgnal Classification), Modified MUSIC과 같은 고해상도 스펙트럼 예측 기법을 이용하여 주파수 대역 폭과 각도 영역이 작아도 높은 해상도의 ISAR 영상을 만들 수 있다. 본 논문에서는 IFFT, AR, MUSIC, Modified MUSIC 기법을 적용하여 만든 ISAR 영상을 이용하여 표적 구분에 이용하고, 표적 구분에 적절한 ISAR 영상을 얻기 위한 고해상도 기법을 연구한다. 그리고 표적 구분 결과를 보여준다.

실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발 (Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods)

  • 서은빈;이승기;여호영;신관준;최경호;임용섭
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

신경망을 이용한 텍스타일 영상에서의 감성인식 시스템 (Emotion Recognition System Using Neural Networks in Textile Images)

  • 김나연;신윤희;김수정;김지인;정갑주;구현진;김은이
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권9호
    • /
    • pp.869-879
    • /
    • 2007
  • 본 논문에서는 신경망을 이용하여 텍스타일 영상으로부터 인간의 감성을 인식할 수 있는 시스템을 제안한다. 자동감성인식 시스템의 구현을 위해 220장의 텍스타일 영상을 수집한 후, 일반인 20명을 대상으로 설문조사를 실시하였다. 이를 통해 텍스타일 영상에서의 패턴과 감성간의 상관관계, 즉 특정 패턴이 사람의 감성에 영향을 준다는 것을 발견하였다. 따라서 본 연구에서는 텍스타일 영상에 포함된 패턴의 인식을 위해 신경망을 이용하였으며, 이때 패턴 정보의 추출을 위해 두 가지 특징 추출 방법을 사용한다. 첫 번째는 auto-regressive method를 이용한 raw-pixel data extraction scheme(RDES)을 사용하는 것이고, 두 번째는 wavelet transformed data extraction scheme(WTDES)을 사용하는 것이다. 제안된 시스템의 유용성을 증명하기 위해서 실제 100장의 텍스타일 영상을 감성을 인식하는데 사용했다. 그 결과 RDES와 WTDES를 사용했을 때 각각 71%와 90%의 인식률로, WTDES를 사용했을 때가 RDES를 사용했을 때보다 더 좋은 성능을 보였다. 데이타 추출방법에 따라 다소 차이가 있었지만 전체적으로 약 81%의 정확도를 보였다. 이러한 실험 결과는 제안된 방법이 감성인식 기반으로 텍스타일 데이타를 검색 할 수 있는 시스템 및 다양한 산업 분야에 응용 가능함을 보여주었다.

도심방범용 CCTV를 위한 실시간 얼굴 영역 인식 시스템 (Development of Real-Time Face Region Recognition System for City-Security CCTV)

  • 김영호;김진홍
    • 한국멀티미디어학회논문지
    • /
    • 제13권4호
    • /
    • pp.504-511
    • /
    • 2010
  • 본 논문에서는 인간 뇌의 내부에 존재하는 해마를 모델링한 해마 신경망을 사용하여 도시방범용 CCTV를 위한 얼굴영역 인식 시스템을 제안한다. 이 시스템은 특징추출 부분과 학습 및 인식 부분으로 구성되어 있으며, 특징 추출 부분은 PCA(Principal Component Analysis)와 LDA(Linear Discriminant Analysis) 사용하여 구성한다. 학습부분에서는 해마의 구조의 순서에 따라 입력되는 영상 데이터들의 특징을 치아 이랑 영역에서 호감도 조정에 의해 반응 패턴을 이진화 하고, 다음으로 CA3 영역에서의 자기 연상을 통해 영상에 포함되어 있는 노이즈를 제거하게 된다. 노이즈가 제거된 데이터는 CA1 영역에서 신경망을 통해 장기기억이 이루어진다. 제안한 시스템의 성능을 평가하기 위해 형태변화와 조명변화에 따른 인식률 실험을 실시하였다. 실험 결과, 본 논문에서 제안한 특징 추출 및 학습 방법을 다른 학습 방법들과 비교하였을 때, 우수한 인식률을 가짐을 확인하였다.

교통 표지판 자동 인식에 관한 연구 (Study of Traffic Sign Auto-Recognition)

  • 권만준
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5446-5451
    • /
    • 2014
  • 내비게이션 단말기에 사용되는 전자지도 제작이 수작업으로 이루어지고 있어 오기가 발생할 수 있기 때문에, 본 논문에서는 내비게이션 정보의 요소로 다루어지는 교통 표지판에 대한 오프라인 자동 인식에 대해 제안하였다. 컴퓨터 비전과 패턴 인식 응용 분야로 2차원 얼굴 인식 분야에 널리 활용되고 있는 주성분분석기법(PCA)과 선형판별분석기법(LDA)을 이용하여 교통표지판을 인식하고자 한다. 먼저 PCA를 이용하여 높은 차원의 2차원 이미지 데이터를 저차원의 특징 벡터영역으로 투영을 시킨다. PCA로부터 구해진 저차원의 특징 벡터를 이용하여 LDA로 분산 매트릭스들 간에 최대가 되고 하고, 분산 매트릭스 내에서는 최소가 되도록 하였다. 실제 도로 환경에서 추출된 교통 신호판의 대부분을 제안된 알고리즘에 의해서 특징 벡터를 40개 이상 사용하였을 경우 92.3%이상의 높은 인식률을 보임을 확인하였다.