DOI QR코드

DOI QR Code

Evaluation Method of Structural Safety using Gated Recurrent Unit

Gated Recurrent Unit 기법을 활용한 구조 안전성 평가 방법

  • Jung-Ho Kang (Dept. of Mechanical Engineering, Dong A University)
  • Received : 2024.01.12
  • Accepted : 2024.01.29
  • Published : 2024.02.28

Abstract

Recurrent Neural Network technology that learns past patterns and predicts future patterns using technology for recognizing and classifying objects is being applied to various industries, economies, and languages. And research for practical use is making a lot of progress. However, research on the application of Recurrent Neural Networks for evaluating and predicting the safety of mechanical structures is insufficient. Accurate detection of external load applied to the outside is required to evaluate the safety of mechanical structures. Learning of Recurrent Neural Networks for this requires a large amount of load data. This study applied the Gated Recurrent Unit technique to examine the possibility of load learning and investigated the possibility of applying a stacked Auto Encoder as a way to secure load data. In addition, the usefulness of learning mechanical loads was analyzed with the Gated Recurrent Unit technique, and the basic setting of related functions and parameters was proposed to secure accuracy in the recognition and prediction of loads.

Keywords

References

  1. D. S. Cho, (2021). "An Design Exploration Technique of a Hybrid Memory for Artificial Intelligence Applications", Journal of the Korean Society of Industry Convergence, vol. 24(5), pp, 531-536, (2021). DOI: 10.21289/KSIC.2021.24.5.531 
  2. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, pp. 161-309, (2017). 
  3. K. J. Choi, "Optimization of Posture for Humanoid Robot Using Artificial Intelligence", Journal of the Korean Society of Industry Convergence, Vol. 22(2), pp. 87-93. (2019). DOI: 10.21289/KSIC.2019.22.2.87 
  4. K. S. Lee, J. U. Kim, S. C. Cho, & B. S. Shin, "Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence". Journal of the Korean Society of Industry Convergence, Vol. 24(6_2), pp. 729-735. (2021). DOI: 10.21289/KSIC.2021.24.6.729 
  5. H. P. Jang, D. S. Han, "Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom", J. of KSMPE, Vol. 10, No. 4, pp. 44-49, (2011). 
  6. H. Lee and T. Park, "Static Structural Analysis of Variable Position Control Servo Press," Journal of the Korean Society of Industry Convergence, vol. 25, no. 5, pp. 881-888, Oct. (2022). DOI: 10.21289/KSIC.2022.25.5.881 
  7. N.-R. Son, "Mid- and Short-term Power Generation Forecasting using Hybrid Model," Journal of the Korean Society of Industry Convergence, vol. 26, no. 4_2, pp. 715-724, Aug. (2023). DOI: 10.21289/KSIC.2023.26.4.715 
  8. J. Dawani, Hands-On Mathematics for Deep Learning, Packt Publishing, Birmingham, pp. 258-265, (2020).
  9. T. H. Kim, A Study on Hoisting Load Prediction through Deep Learning-Based Crawler Crane Roller Load, Master's Thesis, Dong-A University, (2021).
  10. D. K. Lee, Study on roller load analysis of crawler crane and elicitation of overturn risk rate applying machine learning, Master's Thesis, Dong-A University, (2020).
  11. D. K. Lee, J. H. Kang, T. H. Kim, C. K. Oh, J. M. Kim, J. M. Kim, "Analysis of Roller Load by Boom Length and Rotation Angle of a Crawler Crane", J. of KSMPE, Vol. 20, No. 3, pp. 83~91, (2021). https://doi.org/10.14775/ksmpe.2021.20.03.083
  12. M. S. Kim, A study on hoisting load prediction through deep learning-based crawler crane roller load, Master's Thesis, Dong-A University, Republic of Korea, (2022). 
  13. M. S. Kim, A study on hoisting load prediction through deep learning-based crawler crane roller load, Master's Thesis, Dong-A University, Republic of Korea, (2022). 
  14. F. P. Beer, E. R. Johnston, J. T. DeWolf, D. Mazurek, S. Sanghi, Mechanics of materials, McGraw-Hill Education, New York, pp. 418-437, (2020).
  15. M. Alam, G. Liu, H. Bao, B. Han, "A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis", Mathematical Problems in Engineering, Vol. 2018, Article ID 5105709, pp. 10, (2018). DOI: 10.1155/2018/5105709 
  16. J. Dawani, Hands-on mathematics for deep learning, packt publishing 2020:283-304, (2020).
  17. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, pp. 493-515, (2017). 
  18. H. Kim, and T. Lee, "Stacked Autoencoder Based Malware Feature Refinement Technology Research," Journal of the Korea Institute of Information Security & Cryptology, vol. 30, no. 4, pp. 593-603, (2020). DOI: 10.13089/JKIISC.2020.30.4.593 
  19. Y. J. Yoo, D. H. Kim and J. K. Lee, "A performance comparison of super resolution model with different activation functions", KIPS 9, pp. 303-308, (2020). DOI: 10.3745/KTSDE.2020.9.10.303. 
  20. J. Dawani, Hands-on mathematics for deep learning, packt publishing 2020:178-192. (2020), 
  21. D. Chic c o, M. J. Warrens and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation", PeerJ Comput. Sci. 7, e623, (2021). DOI: 10.7717/peerj-cs.623.2021. 
  22. J. Dawani, Hands-on mathematics for deep learning, packt publishing 2020, pp. 192-196, (2020). 
  23. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, pp. 267-320. (2017). 
  24. J. Dawani, Hands-on mathematics for deep learning, packt publishing 2020, pp. 121-142, (2020).