• 제목/요약/키워드: Auto Recognition

검색결과 175건 처리시간 0.03초

SSAE 알고리즘을 통한 2003-2016년 남한 전역 쌀 생산량 추정 (Rice Yield Estimation of South Korea from Year 2003-2016 Using Stacked Sparse AutoEncoder)

  • 마종원;이경도;최기영;허준
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.631-640
    • /
    • 2017
  • 쌀 생산량 예측 및 조사는 농가 소득 보전 및 농업 분야 기관에 영향을 주고 수급 조절과 가격 예측 등 정부의 정책 수립과 관련하여 중요한 의미를 갖는다. 이에 따라 작황 추정 모델의 구축이 필요하며 과거로부터 기상 자료 및 위성 자료를 통해 경험적 통계 모델 또는 인공신경망 알고리즘을 기반으로 한 연구가 다수 진행되었다. 현재 인공신경망 모델을 기반으로 개발된 딥 러닝 알고리즘이 패턴 인식, 컴퓨터 비전, 음성 인식 등의 분야에서 폭넓게 사용되며 뛰어난 성능을 보이고 있다. 최근 다양한 딥 러닝 알고리즘 중 SSAE 알고리즘이 시계열 자료를 통한 예측 분야에서 적용 가능성이 확인되었으며 본 연구에서는 SSAE를 통해 남한 전역에 대한 쌀 생산량 추정 연구를 진행하였다. 입력 변수로 기상자료와 위성자료를 사용하였으며 남한 벼의 생육 기간을 고려하여 입력 자료를 기간별로 나누고 최적의 입력 자료롤 찾고자 하였다. 실험 결과, 5월부터 9월까지의 위성 자료와 16일 평균값을 사용한 기상 자료와의 조합을 사용하였을 경우 평균 연도별 %RMSE, 시군구 %RMSE 각각 7.43%, 7.16%로 가장 좋은 성능을 보였으며 이를 통해 쌀 생산량 추정 분야에 대한 SSAE 알고리즘의 적용 가능성을 확인할 수 있었다.

재난약자 및 취약시설에 대한 APC실증에 관한 연구 (Research on APC Verification for Disaster Victims and Vulnerable Facilities)

  • 김승용;황인철;김동식;신정재;용승갑
    • 한국재난정보학회 논문집
    • /
    • 제20권1호
    • /
    • pp.199-205
    • /
    • 2024
  • 연구목적: 본 연구는 요양병원 등 재난취약시설에 재난이 발생할 경우 잔류한 요구조자를 정확하게 파악하여 소방 등 대응기관에 제공하는 APC(Auto People Counting)의 인식률 개선에 목적이 있다. 연구방법: 본 연구에서는 실제 재난취약시설에 설치되어 운영 중인 APC를 대상으로 카메라를 통해 출입 인원의 이미지를 인식하는 알고리즘을 개선하기 위해 CNN모델을 활용하여 베이스라인 모델링을 하였다. 다양한 알고리즘의 성능을 분석하여 상위 7개의 후보군을 선정하고 전이학습 모델을 활용하여 성능이 가장 우수한 최적의 알고리즘을 선정하는 방법으로 연구를 수행하였다. 연구결과: 실험결과 시간과 성능이 가장 좋은 Densenet201, Resnet152v2 모델의 정밀도와 재현율을 확인한 결과 모든 라벨에 대해서 정확도 100%를 나타내는 것을 확인할 수 있었다. 이 중 Densenet201 모델이 더 높은 성능을 보여주었다. 결론: 다양한 인공지능 알고리즘 중 APC에 적용할 수 있는 최적의 알고리즘을 선정하였다. 향후 연무 등 다양한 재난상황에서 재난취약시설 내 출입인원을 정확하게 파악할 수 있도록 알고리즘 분석 및 학습에 대한 추가 연구가 요구된다.

인공지능 학습용 데이터의 개인정보 비식별화 자동화 도구 개발 연구 - 영상데이터기반 - (Research on the development of automated tools to de-identify personal information of data for AI learning - Based on video data -)

  • 이현주;이승엽;전병훈
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.56-67
    • /
    • 2023
  • 최근 데이터 기반 산업계의 오랜 숙원이었던 개인정보 비식별화가 2020년 8월 데이터3법[1]이 개정되어 명시화 되었다. 4차 산업시대의 원유[2]라 불리는 데이터를 산업 분야에서 활성화할 수 있는 기틀이 되었다. 하지만, 일각에서는 비식별개인정보(personally non-identifiable information)가 정보주체의 기본권 침해를 우려하고 있는 실정이다[3]. 이에 개인정보 비식별화 자동화 도구인 Batch De-Identification Tool을 개발 연구를 수행하였다. 본 연구에서는 첫 번째로, 학습용 데이터 구축을 위해 사람 얼굴(눈, 코, 입) 및 다양한 해상도의 자동차 번호판 등을 라벨링하는 이미지 라벨링 도구를 개발하였다. 두 번째로, 객체 인식 모델을 학습하여 객체 인식 모듈을 실행함으로써 개인정보 비식별화를 수행할 수 있도록 하였다. 본 연구의 결과로 개발된 개인정보 비식별화 자동화 도구는 온라인 서비스를 통해 개인정보 침해 요소를 사전에 제거할 수 있는 가능성을 보여주었다. 이러한 결과는 데이터 기반 산업계에서 개인정보 보호와 활용의 균형을 유지하면서도 데이터의 가치를 극대화할 수 있는 가능성을 제시하고 있다

  • PDF

유비쿼터스 컴퓨팅환경에서의 Multimodal Sensor 기반의 Health care를 위한 사용자 행동 자동인식 시스템 - Multi-Sensor를 이용한 ADL(activities of daily living) 지수 자동 측정 시스템 (Design and Implementation of a User Activity Auto-recognition System based on Multimodal Sensor in Ubiquitous Computing Environment)

  • 변성호;정유석;김태수;김현우;이승환;조위덕
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.21-26
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경의 급속한 발전은 Multi-Sensor를 이용하여 자동으로 사용자의 행동인식을 가능한 환경을 만들어주었다. 따라서 이 논문에서는 사용자가 일상생활을 하는데 있어서 기본적으로 필요한 행동인 ADL(activities of daily living)의 수행능력을 분석하고 진단할 수 있는 Multi-Sensor기반의 ADL 자동 진단 시스템을 구축하였다. 두 개의 가속도 센서를 허벅지와 손목에 부착하여 사용자의 행동 정보를 수집하고 이를 Decision-Tree를 통하여 분석하여 사용자의 행동 정보를 수집하였다. 또한 Zigbee 센서를 이용하여 개별 물체의 Object ID를 이용하여 사용자의 위치정보와 주변의 물체의 정보를 수집하여 사용자의 상태 정보를 수집하였다. 이렇게 수집된 행동 정보와 상태 정보들을 통하여 일상생활에 필요한 약 20여 가지의 행동을 인식하였고 평균적으로 96%이상의 정확도를 나타내었으며 이를 통하여 ADL 지수를 자동으로 측정하였다.

  • PDF

아크 지락 사고에 대한 사고거리추정 및 사고판별에 관한 자동 적응자동재폐로 기법 (Adaptive AutoReclosure Technique for Fault Location Estimation and Fault Recognition about Arcing Ground Fault)

  • 김현홍;이찬주;채명석;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.283-285
    • /
    • 2005
  • This paper presents a new two-terminal numerical algorithm for fault location estimation and for faults recognition using the synchronized phasor in time-domain. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. Also the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. In this paper the algorithm is given and estimated using DFT(Discrete Fourier Transform) and the LES(Least Error Squares Method). The algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm, the Electro-Magnetic Transient Program(EMTP/ATP) and MATLAB is used.

  • PDF

커넥티드카 인포테인먼트 시스템의 분석 및 설계 (Analysis and Design of Connected Car Infotainment System)

  • 조병호;안희학
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.17-23
    • /
    • 2017
  • 커넥티드카는 연결성이 주요 요소로서 항시 LTE나 5G 무선이동통신에 의한 인터넷 접속이 가능하여 인포테인먼트 기능 구현에 있어 새로운 개념의 스마트PC 하드웨어 및 서버의 음성인식 엔진을 이용한 디지털 가상비서의 소프트웨어 설계 방법을 활용할 수 있다. 본 논문에서는 음성인식 기술에 기반한 커넥티드카 인포테인먼트 시스템 구현을 위하여 스마트 오토PC의 하드웨어 및 GENIVI 플랫폼에서의 소프트웨어 구조와 필요한 기능 등을 제시한다. 또한 객체지향 분석 방법을 이용하여 사용자 요구사항 분석, 플로우차트 및 화면 설계를 보여줌으로 효과적인 커넥티드카 인포테인먼트 소프트웨어 분석 및 설계 방법을 제시하고자 한다.

고속 적응자동재폐로를 위한 사고거리추정 및 사고판별에 관한 개선된 양단자 수치해석 알고리즘 (An Improved Two-Terminal Numerical Algorithm of Fault Location Estimation and Arcing Fault Detection for Adaptive AutoReclosure)

  • 이찬주;김현홍;박종배;신중린;조란 라도예빅
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권11호
    • /
    • pp.525-532
    • /
    • 2005
  • This paper presents a new two-terminal numerical algorithm for fault location estimation and for faults recognition using the synchronized phaser in time-domain. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the assumed PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. Also the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. In this paper the algorithm is given and estimated using DFT(discrete Fourier Transform) and the LES(Least Error Squares Method). The algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm, the Electro-Magnetic Transient Program(EMTP/ATP) is used.

Design for Automation System for Pharmaceutical Prescription Using Arduino and Optical Character Recognition

  • Lim, Myung-Jae;Jung, Dong-Kun;Kim, Kyu-Dong;Kwon, Young-Man
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.66-71
    • /
    • 2021
  • Recent healthcare environments have characteristics of expanding the scope of healthcare-impacting healthcare, complexity resulting from diversification of components, and accelerating the pace of change. Drugs are used for the prevention, mitigation, and treatment of diseases, so they can inevitably cause harm, while they have efficacy and effectiveness, which are key elements of health recovery. Therefore, many countries regulate permits for safe and effective medicines, and also designate essential drugs directly related to life as pay targets and guarantee health insurance. Especially Pharmacist relying on manpower for composition medicine is liable for mal-manufacture due to combination of toxic medical substances or other chemical usage. In this paper, we focus on using Kiosk and Optical Character Recognition (OCR) for automated pharmacy to level up medical service and create labor friendly environment for pharmacist themselves through maintenance of prescription data and automated manufacturing solution. Presentation of drug substances and precautions will lead to efficient drug prescription and prevent misuse of information while auto manufacturing system efficiently maintain labor force and raise patient satisfaction level by reduction of waiting time.

자동차 번호판 인식 및 스마트폰을 활용한 객체지향 설계 기반의 효율적인 차량 관리 시스템 (An Efficient Car Management System based on an Object-Oriented Modeling using Car Number Recognition and Smart Phone)

  • 정세훈;권용욱;심춘보
    • 한국전자통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1153-1164
    • /
    • 2012
  • 본 논문에서는 자동차 번호판 인식 및 스마트폰을 활용한 객체 지향 설계 기반의 효율적인 차량 관리 시스템을 제안한다. 제안하는 시스템은 수리 차량 입고 시 IP카메라를 이용하여 실시간으로 자동차 번호판을 인식하고 인식된 차량의 기존 수리 이력 정보를 DID에 출력한다. 또한 차량 정비사가 수리 차량을 정비하는 동안 IP 카메라를 통해 수리 과정을 동영상으로 촬영하며, 촬영된 동영상 중에 프레임을 추출하여 사용자의 스마트폰에 이미지를 전송함으로써 고객 차량 확인 및 수리 이력 관리 기능을 제공한다. 사용자의 편의성을 제공하기 위해 웹 및 모바일 기반의 사용자 인터페이스를 제공한다. 제안하는 시스템의 설계는 구현 후 재사용성과 확장성을 고려하여 모듈을 세분화한 객체 지향 기반의 소프트웨어 설계 모델링을 적용한다. 제안하는 시스템을 통해 차량 수리 센터 및 정비업체는 업무의 효율성을 향상시킬 수 있으며, 아울러 차량 수리를 요청한 고객의 신뢰도를 높일 수 있다.

Power Disturbance Classifier Using Wavelet-Based Neural Network

  • Choi Jae-Ho;Kim Hong-Kyun;Lee Jin-Mok;Chung Gyo-Bum
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.307-314
    • /
    • 2006
  • This paper presents a wavelet and neural network based technology for the monitoring and classification of various types of power quality (PQ) disturbances. Simultaneous and automatic detection and classification of PQ transients, is recommended, however these processes have not been thoroughly investigated so far. In this paper, the hardware and software of a power quality data acquisition system (PQDAS) is described. In this system, an auto-classifying system combines the properties of the wavelet transform with the advantages of a neural network. Additionally, to improve recognition rate, extraction technology is considered.