• Title/Summary/Keyword: Auto Power Spectrum

Search Result 30, Processing Time 0.042 seconds

Dynamic Characteristics Analysis on Antenna Equipment by Experimental Method (실험적 기법을 통한 안테나장비 동특성 분석)

  • Shin, Joon-Yub;Lee, Jong-Hak;Kang, Young-Sik;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.632-637
    • /
    • 2012
  • Antenna equipment is transported being assembled to moving equipment and often subjected to vibration and shock excitation during transportation. In these circumstances, structural safety of antenna equipment must be secured. Wire rope isolators are assembled between moving equipment and antenna equipment to reduce the level of vibration and shock. In this paper, a isolator that are suitable to the system is selected and dynamic characteristics analysis of driving on antenna equipment is conducted using real system and the result is compared with response analysis. Also modal test of array-antenna pack-assembly is conducted and structural safety of that is secured by reinforcing its structure.

  • PDF

Study on mapping of dark matter clustering from real space to redshift space

  • Zheng, Yi;Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2016
  • The mapping of dark matter clustering from real to redshift spaces introduces the anisotropic property to the measured density power spectrum in redshift space, known as the Redshift Space Distortion (hereafter RSD) effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to the indefinite cross correlations between the density and velocity fields, and the Finger-of-God (hereafter FoG) effect due to the randomness of the peculiar velocity field. Furthermore, the rigorous test of this mapping formula is contaminated by the unknown non-linearity of the density and velocity fields, including their auto- and cross-correlations, for calculating which our theoretical calculation breaks down beyond some scales. Whilst the full higher order polynomials remains unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the non-local FoG term being independent of the separation vector between two different points, and 2) the local FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the best fitted non-local FoG function is Gaussian, with only one scale-independent free parameter, and that our new mapping formulation accurately reproduces the observed power spectrum in redshift space at the smallest scales by far, up to k ~ 0.3 h/Mpc, considering the resolution of future experiments.

  • PDF

Spectral Estimation of EEG signal by AR Model (AR 모델을 이용한 뇌파신호의 스펙트럼 추정)

  • Ryo, D.K.;Kim, T.S.;Huh, J.M.;Yoo, S.K.;Park, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.114-117
    • /
    • 1990
  • EEG signal is analyzed by two methods, analysis by visual inspection of EEG recording sheets and analysis by quantative method. Generally visual inspection method is used in the clinical field. But this method has its limitation because EEG signal is random signal. Therefore it is necessary to analyze EEG signals quantatively to obtain more precise and objective information of neural and brain. In this paper, power spectrum of EEG signal was estimated by AR(AutoRegressive) model in the frequency domain. This process is useful as a preprocessing stage for tomographic brain mapping (TBM) at each frequency, band. As a method for estimating power spectral density of EEG signals, periodogram method, autocorrelation method. covariance method, modified covariance method, and Burg method are tested in this paper.

  • PDF

A Study on Optical Correlation for Indoor Positioning based LED-ID (LED-ID기반 실내 위치인식을 위한 Optical Correlation에 관한 연구)

  • Lee, Jung-Hoon;Cha, Jae-Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.75-80
    • /
    • 2013
  • In this paper, We proposed a Optical Correlation for indoor positioning based LED-ID. The proposed Optical Correlation has a advantage to low-interference between spread code number sequences and LED-ID. it is applied a spread code to reduce the interference with additional information based LED-ID. The additional information is enable to detect in transmitted signal using auto correlation. Also we designed and implemented the Optical Correlation for clearly detecting the additional information. Simulations were performed to confirm the performance of BER and the power of additional information. Optical Correlation simulator to indoor positioning based LED-ID was implemented to prove a usefulness.

Development Estimation Method to Estimate Sensing Ability of Smart Sensors (지능센서의 센싱능력 평가를 위한 평가기법 개발)

  • Hwang Seong-Youn;Murozono Masahiko;Kim Young-Moon;Hong Dong-Pyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.99-106
    • /
    • 2006
  • In this paper, the new method that estimates a sensing ability of smart sensor will be proposed. A study is estimation method that evaluates sensing ability about smart sensor respectively. According to acceleration(g) and displacement changing, we estimated sensing ability of smart sensor using SAI(Sensing Ability Index) method respectively. Smart sensors was made fer experiment. The types of smart sensor are two types(hard and soft smart sensor). Smart sensors developed for recognition of material. Experiment and analysis are executed for estimate the SAI method. In develop a smart sensor, the SAI method will be useful for finding optical design condition of smart sensor that can sense a material. And then dynamic characteristics of smart sensors(frequency changing, acceleration changing, critical point, etc.) are evaluated respectively through new method(SAI) that use the power spectrum density. Dynamic characteristic of sensor is evaluated with SAI method relatively. We can use the SAI for finding critical point of smart sensor, too.

A Study on the Nonlinearity of Chaotic Signal by Bispectral Analysis (바이스펙트럼 해석에 의한 카오스 신호의 비선형성에 관한 연구)

  • Lee, Hae-Jin;Lee, Gyeong-Tae;Park, Young-Sun;Cha, Kyung-Joon;Park, Moon-Il;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.817-825
    • /
    • 2007
  • During thirty years, deterministic chaos has moved center stage in many areas of applied mathematics. One important stimulus for this, particularly in the early 1970s, was work on nonlinear aspects of the dynamics of plant and animal populations. There are many situations, at least to a crude first approximation, by a simple first-order difference equation. Past studies have shown that such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behavior, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. But higher-order spectral analyses of such behavior are usually not considered. Higher-order spectra of a signal contain important information that is not present in its power spectrum. So, if we find the spectral pattern and get information from it, it will be able to be used effectively in so many fields. Hence, this paper uses auto bicoherence and bicoherence residue which are sort of bispectrum. Applying these to behavior of logistic difference equation, which is typical chaotic signal, the phenomenon of phase coupling and the appearance of frequency band can be analyzed. Such information means that bispectral analysis is useful to detect nonlinearity of signal.

MASS ESTIMATION OF IMPACTING OBJECTS AGAINST A STRUCTURE USING AN ARTIFICIAL NEURAL NETWORK WITHOUT CONSIDERATION OF BACKGROUND NOISE

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung;Choi, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.343-354
    • /
    • 2011
  • It is critically important to identify unexpected loose parts in a nuclear reactor pressure vessel, since they may collide with and cause damage to internal structures. Mass estimation can provide key information regarding the kind as well as the location of loose parts. This study proposes a mass estimation method based on an artificial neural network (ANN), which can overcome several unresolved issues involved in other conventional methods. In the ANN model, input parameters are the discrete cosine transform (DCT) coefficients of the auto-power spectrum density (APSD) of the measured impact acceleration signal. The performance of the proposed method is then evaluated through application to a large-sized plate and a 1/8-scaled mockup of a reactor pressure vessel. The results are compared with those obtained using a conventional method, the frequency ratio (FR) method. It is shown that the proposed method is capable of estimating the impact mass with 30% lower relative error than the FR method, thus improving the estimation performance.

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Development of Diagnosis System for LNG Pump (LNG 펌프 고장 진단 시스템 개발)

  • Hong S. H.;Lee Y. W.;Hwang W G.;Ki Ch. D.;Kim Y. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.88-95
    • /
    • 1998
  • Vibration analysis of rotating machinery can give an indication of possible faults thus allowing maintenance before further damage occurs. Current predictive maintenance system installed in Pyung-tak has the ability to diagnose the mechanical problems within the LNG Pump when the vibration exceeds preset overall alarm levels. In this study, LNG pump auto-diagnosis system based upon Windows NT and DSP Board is developed. This system analysis velocity signal acquired from dual accelerometer input monitor system to diagnose pump condition. Many plots which display machine condition are shown and features of vibration are stored in every time. If the fault is found, the system diagnoses automatically using expert system and trend monitoring. Operator checks pump condition intuitively using personal computer monitor.

  • PDF

An Analysis of Optimal Sequences for the Detection of Wake-up Signal in Disaster-preventing Broadcast (재난방송용 대기모드 해제신호 검출을 위한 최적 부호 성능 분석)

  • Park, Hae Yong;Jo, Bonggyun;Kim, Heung Mook;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2014
  • Recently, the need for disaster-preventing broadcast has increased gradually to cope with natural disaster like earthquake and tsunami causing enormous losses of both life and property. In disaster-preventing broadcast system, the wake-up signal is used to alert user terminal and switch the current state of channel to the emergency channel, which is for the fast and efficient delivery of emergency information. In this paper, we propose the detection method of wake-up signal for disaster-preventing broadcast systems. The wake-up signals for disaster-preventing broadcast should have a good auto-correlation property in low power and narrow-band conditions that does not affect the existing digital television (DTV) system. The suitability of the m-sequence and complementary code (CC) is analyzed for wake-up signals according to signal to noise ratio. A wake-up signal is proposed by combining the direct sequence spread spectrum (DSSS) technique and pseudo noise (PN) sequences such as Barker and Walsh-Hadamard codes. By using the proposed method, a higher detecting performance can be achieved by the spreading gain compared to the single long m-sequence and the Golay code.