• Title/Summary/Keyword: Authentication factor

Search Result 150, Processing Time 0.023 seconds

Security enhanced privacy-aware two-factor authentication protocol for wireless sensor networks (무선 센서 네트워크 환경을 위한 보안성이 향상된 프라이버시 보호형 two-factor 인증 프로토콜)

  • Choi, Younsung;Chang, Beom-Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.71-84
    • /
    • 2019
  • Various researchers conducted the research on two-factor authentication suitable for wireless sensor networks (WSNs) after Das first proposed two-factor authentication combining the smart card and password. After then, To improve the security of user authentication, elliptic curve cryptography(ECC)-based authentication protocols have been proposed. Jiang et al. proposed a privacy-aware two-factor authentication protocol based on ECC for WSM for resolving various problems of ECC-based authentication protocols. However, Jiang et al.'s protocol has the vulnerabilities on a lack of mutual authentication, a risk of SID modification and a lack of sensor anonymity, and user's ID exposed on sensor node Therefore, this paper proposed security enhanced privacy-aware two-factor authentication protocol for wireless sensor networks to solve the problem of Jiang et al.'s protocol, and security analysis was conducted for the proposed protocol.

1.5-factor Authentication Method using Secure Keypads and Biometric Authentication in the Fintech (핀테크 환경에서 보안 키패드와 생체인증을 이용한 1.5-factor 인증 기법)

  • Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.20 no.11
    • /
    • pp.191-196
    • /
    • 2022
  • In the fintech field, financial transactions with smart phones are actively conducted. User authentication technology is essential for safe financial transactions. PIN authentication through the existing security keypads is convenient to input but has weaknesses in security and others. The biometric authentication technique is secure, but there is a possibility of false positive and false negative authentication. To compensate for this, two-factor authentication is used. In this paper, we propose the 1.5-factor authentication that can increase convenience and security through PIN input with biometric authentication. It provides the stability of fingerprint authentication and convenience of two or three PIN inputs, and this makes safe financial transaction possible. Since biometric authentication is performed at the same time when entering PIN, while security is required by applying fingerprint authentication to the area touched while entering PIN. The User authentication is performed while ensuring convenience to input through additional PIN input in situations where high safety is required, and Safe financial transactions are possible.

User Authentication Mechanism using Smartphone (스마트폰을 이용한 사용자 인증 메커니즘)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.301-308
    • /
    • 2017
  • With the popularization of smart phones and the development of the Internet, many people use smart phones to conduct identity verification procedures. smart phones are easier and faster to authenticate than personal desktop computers. However, as Internet hacking technology and malicious code distribution technology rapidly evolve and attack types become more diverse, authentication methods suitable for mobile environment are required. As authentication methods, there are methods such as possessive-based authentication, knowledge-based authentication, biometric-based authentication, pattern-based authentication, and multi-element authentication. In this paper, we propose a user authentication mechanism that uses collected information as authentication factor using smart phone. Using the proposed authentication mechanism, it is possible to use the smart phone information and environment information of the user as a hidden authentication factor, so that the authentication process can be performed without being exposed to others. We implemented the user authentication system using the proposed authentication mechanism and evaluated the effectiveness based on applicability, convenience, and security.

An Interactive Multi-Factor User Authentication Framework in Cloud Computing

  • Elsayed Mostafa;M.M. Hassan;Wael Said
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.63-76
    • /
    • 2023
  • Identity and access management in cloud computing is one of the leading significant issues that require various security countermeasures to preserve user privacy. An authentication mechanism is a leading solution to authenticate and verify the identities of cloud users while accessing cloud applications. Building a secured and flexible authentication mechanism in a cloud computing platform is challenging. Authentication techniques can be combined with other security techniques such as intrusion detection systems to maintain a verifiable layer of security. In this paper, we provide an interactive, flexible, and reliable multi-factor authentication mechanisms that are primarily based on a proposed Authentication Method Selector (AMS) technique. The basic idea of AMS is to rely on the user's previous authentication information and user behavior which can be embedded with additional authentication methods according to the organization's requirements. In AMS, the administrator has the ability to add the appropriate authentication method based on the requirements of the organization. Based on these requirements, the administrator will activate and initialize the authentication method that has been added to the authentication pool. An intrusion detection component has been added to apply the users' location and users' default web browser feature. The AMS and intrusion detection components provide a security enhancement to increase the accuracy and efficiency of cloud user identity verification.

A Study on the Correlation between Atypical Form Factor-based Smartphones and Display-dependent Authentication Methods (비정형 폼 팩터 기반 스마트폰과 디스플레이 의존형 사용자 인증기법의 상관관계 연구)

  • Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1076-1089
    • /
    • 2021
  • Among the currently used knowledge-based authentication methods for smartphones, text and graphic-based authentication methods, such as PIN and pattern methods, use a display unit and a touch function of the display unit for input/output of secret information. Recently released smartphone form factors are trying to transform into various forms, away from the conventional bar and slate types because of the material change of the display unit used in the existing smartphone and the increased flexibility of the display unit. However, as mentioned in the study of D. Choi [1], the structural change of the display unit may directly or indirectly affect the authentication method using the display unit as the main input/output device for confidential information, resulting in unexpected security vulnerabilities. In this paper, we analyze the security vulnerabilities of the current mobile user authentication methods that is applied atypical form factor. According to the analysis results, it seems that the existing display-dependent mobile user authentication methods do not consider emerging security threats at all. Furthermore, it is easily affected by changes in the form factor of smartphones. Finally, we propose countermeasures for security vulnerabilities expected when applying conventional authentication methods to atypical form factor-based smartphones.

Security Analysis of a Biometric-Based User Authentication Scheme (Biometric 정보를 기반으로 하는 사용자 인증 스킴의 안전성 분석)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Password-based authentication using smart card provides two factor authentications, namely a successful login requires the client to have a valid smart card and a correct password. While it provides stronger security guarantees than only password authentication, it could also fail if both authentication factors are compromised ((1) the user's smart card was stolen and (2) the user's password was exposed). In this case, there is no way to prevent the adversary from impersonating the user. Now, the new technology of biometrics is becoming a popular method for designing a more secure authentication scheme. In terms of physiological and behavior human characteristics, biometric information is used as a form of authentication factor. Biometric information, such as fingerprints, faces, voice, irises, hand geometry, and palmprints can be used to verify their identities. In this article, we review the biometric-based authentication scheme by Cheng et al. and provide a security analysis on the scheme. Our analysis shows that Cheng et al.'s scheme does not guarantee any kind of authentication, either server-to-user authentication or user-to-server authentication. The contribution of the current work is to demonstrate these by mounting two attacks, a server impersonation attack and a user impersonation attack, on Cheng et al.'s scheme. In addition, we propose the enhanced authentication scheme that eliminates the security vulnerabilities of Cheng et al.'s scheme.

A Study on Multibiometrics derived from Calling Activity Context using Smartphone for Implicit User Authentication System

  • Negara, Ali Fahmi Perwira;Yeom, Jaekeun;Choi, Deokjai
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.14-21
    • /
    • 2013
  • Current smartphone authentication systems are deemed inconvenient and difficult for users on remembering their password as well as privacy issues on stolen or forged biometrics. New authentication system is demanded to be implicit to users with very minimum user involvement being. This idea aims towards a future model of authentication system for smartphones users without users realizing them being authenticated. We use the most frequent activity that users carry out with their smartphone, which is the calling activity. We derive two basics related interactions that are first factor being arm's flex (AF) action to pick a phone to be near ones' ears and then once getting near ear using second factor from ear shape image. Here, we combine behavior biometrics from AF in first factor and physical biometrics from ear image in second factor. Our study shows our dual-factor authentication system does not require explicit user interaction thereby improving convenience and alleviating burden from users from persistent necessity to remember password. These findings will augment development of novel implicit authentication system being transparent, easier, and unobtrusive for users.

Multi-Factor Authentication System based on Software Secure Card-on-Matching For Secure Login (안전한 로그인을 위한 소프트 보안카드 기반 다중 인증 시스템)

  • Lee, Hyung-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.28-38
    • /
    • 2009
  • Login process uses both ID and password information to authenticate someone and to permit its access privilege on system. However, an attacker can get those ID and password information by using existing packet sniffing or key logger programs. It cause privacy problem as those information can be used as a hacking and network attack on web server and web e-mail system. Therefore, a more secure and advanced authentication mechanism should be required to enhance the authentication process on existing system. In this paper, we propose a multi-factor authentication process by using software form of secure card system combined with existing ID/Password based login system. Proposed mechanism uses a random number generated from the his/her own handset with biometric information. Therefore, we can provide a one-time password function on web login system to authenticate the user using multi-factor form. Proposed scheme provide enhanced authentication function and security because it is a 'multi-factor authentication mechanism' combined with handset and biometric information on web login system.

Two Factor Authentication for Cloud Computing

  • Lee, Shirly;Ong, Ivy;Lim, Hyo-Taek;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.427-432
    • /
    • 2010
  • The fast-emerging of cloud computing technology today has sufficiently benefited its wide range of users from individuals to large organizations. It carries an attractive characteristic by renting myriad virtual storages, computing resources and platform for users to manipulate their data or utilize the processing resources conveniently over Internet without the need to know the exact underlying infrastructure which is resided remotely at cloud servers. However due to the loss of direct control over the systems/applications, users are concerned about the risks of cloud services if it is truly secured. In the literature, there are cases where attackers masquerade as cloud users, illegally access to their accounts, by stealing the static login password or breaking the poor authentication gate. In this paper, we propose a two-factor authentication framework to enforce cloud services' authentication process, which are Public Key Infrastructure (PKI) authentication and mobile out-of-band (OOB) authentication. We discuss the framework's security analysis in later session and conclude that it is robust to phishing and replay attacks, prohibiting fraud users from accessing to the cloud services.

Efficient and Secure Sound-Based Hybrid Authentication Factor with High Usability

  • Mohinder Singh B;Jaisankar N.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2844-2861
    • /
    • 2023
  • Internet is the most prevailing word being used nowadays. Over the years, people are becoming more dependent on the internet as it makes their job easier. This became a part of everyone's life as a means of communication in almost every area like financial transactions, education, and personal-health operations. A lot of data is being converted to digital and made online. Many researchers have proposed different authentication factors - biometric and/or non-biometric authentication factors - as the first line of defense to secure online data. Among all those factors, passwords and passphrases are being used by many users around the world. However, the usability of these factors is low. Also, the passwords are easily susceptible to brute force and dictionary attacks. This paper proposes the generation of a novel passcode from the hybrid authentication factor - sound. The proposed passcode is evaluated for its strength to resist brute-force and dictionary attacks using the Shannon entropy and Passcode (or password) entropy formulae. Also, the passcode is evaluated for its usability. The entropy value of the proposed is 658.2. This is higher than that of other authentication factors. Like, for a 6-digit pin - the entropy value was 13.2, 101.4 for Password with Passphrase combined with Keystroke dynamics and 193 for fingerprint, and 30 for voice biometrics. The proposed novel passcode is far much better than other authentication factors when compared with their corresponding strength and usability values.