• 제목/요약/키워드: Austenite stainless steel

검색결과 192건 처리시간 0.032초

슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구 (A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW)

  • 문인준;장복수;김세철;고진현
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

다층용접한 슈퍼 듀플렉스 스테인리스강 용접금속의 조직 및 충격인성 (Microstructure and Impact Toughness of Weld Metal in Multipass Welded Super Duplex Stainless Steel)

  • 서원찬;박찬;방국수
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.27-32
    • /
    • 2012
  • The effects of reheating during welding on the microstructure and impact toughness of weld metal in 25% Cr super duplex stainless steels were investigated. Using different heat inputs, weld metals with different reheated regions were obtained. This showed that, depending on the reheating temperature, the microstructure in the reheated region was quite different from that of the as-deposited microstructure. When reheated into the ${\gamma}+{\alpha}$ temperature range, fine intragranular austenite was formed in the as-deposited columnar structure. However, when reheated above the ${\alpha}$ solvus temperature range, most of the columnar structure disappeared and fine equiaxed austenite and ferrite were formed. Because of the larger amount of fine austenite in the reheated region, a higher impact toughness was obtained in the weld metal with a higher amount of reheated region.

슈퍼 듀플렉스 내식강의 부식특성 및 경도에 미치는 텅스텐 첨가의 영향 (Influence of W Additions on the Corrosion Characteristics and Hardness of Super Duplex Stainless Steel)

  • 한윤기;김정민
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.261-269
    • /
    • 2023
  • This study aims to investigate the effects of tungsten additions on the microstructure, corrosion characteristics, and hardness of super duplex stainless steel heat-treated at two different annealing temperatures. Under the annealing temperature of 1100℃, the microstructure of the stainless steels consisted mainly of ferrite, while under the annealing temperature of 1000℃, significant amounts of austenite and secondary phases were also observed. In terms of corrosion characteristics in 3.5 wt%NaCl solution, there was not a significant difference due to W addition at the 1100℃ conditions. However, at the 1000℃, a tendency of decreased corrosion resistance was observed with increasing the tungsten content. On the other hand, the micro-hardness of the stainless steel heat-treated 1000℃ showed an increasing trend with tungsten addition. This increase can be mainly attributed to the higher fraction of secondary phases, primarily sigma, known for their high hardness.

슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향 (Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel)

  • 남성길;박세진;나혜성;강정윤
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향 (Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

슈퍼 듀플렉스 스테인리스강의 응고·냉각 시 상석출에 미치는 냉각속도의 영향 (Influence of the Cooling Rate on the Phase Precipitation of Super Duplex Stainless Steel)

  • 장은석;김기영;김석준
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.23-28
    • /
    • 2015
  • This work presents the effect of the cooling rate on the precipitation of super duplex stainless steel. Specimens of super duplex stainless steel with a specific composition were cooled at various cooling rates after being melted at $1550^{\circ}C$ in a directional solidification furnace. Ferrite (${\delta}$), Austenite (${\gamma}$), Sigma (${\sigma}$), and Chi (${\chi}$) phases were precipitated when the cooling rate was lower than 0.22 K/s. When the cooling rate was 0.22 K/s or faster, ${\sigma}$ and ${\chi}$ phases were not precipitated.

마찰교반접합한 알루미늄 합금과 스테인리스 강 이종접합부 계면 조직 및 접합부 강도 (Interface Analysis and Mechanical Properties of Friction Stir Welded Dissimilar joints between Stainless steel and AI alloy)

  • 이원배;이창용;연윤모;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.189-191
    • /
    • 2005
  • Dissimilar joining of AI 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side and AI alloy were depended on the thermo-mechanical condition which they received. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained AI alloy and intermetallic compound layer which was identified as the $Al_{4}Fe$ with hexagonal close packed structure. Mechanical properties were lower than those of 6013 AI alloy base metal, because tool inserting location was deviated to AI alloy from the butt line, which resulted in the lack of the stirring.

  • PDF

오스나이트계 및 이상계스테인레스강 용착부의 산소가 충격인성에 미치는 영향 (Effect of oxygen content on impact toughness of austenitic-and duplex stainless steel weld metal)

  • 문영훈;김환태;허성도
    • Journal of Welding and Joining
    • /
    • 제5권3호
    • /
    • pp.38-45
    • /
    • 1987
  • An investigation was conducted to find out the factors influencing on the impact toughness of austenitic-and duplex stainless steel weld metal. Various welding process with commerically available consumables was adopted to get weld doposited metal. The oxygen content of each weld metal was very sensitiive to welding process, involving flux composition, shielding gas and structural features. The results of this study show tat the content of oxygen as an oxide inclusion significantly affects impact toughness, and .delta.-ferrite distribution is also correlated with resultant toughness value.

  • PDF

304 스테인리스 강의 가공유기 마르텐사이트와 기계적 거동에 미치는 온도의 영향 (Effects of annealing temperature on strain-induced martensite and mechanical properties of 304 stainless steel)

  • 이상훈;최점용;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2008
  • Transformation of austenite to martensite during cold rolling has been widely used to strengthen metastable austenitic stainless steel grades. Aging treatment of cold worked metastable austenitic stainless steels, including ${\alpha}'$-martensite phase, results in the further increase of strength, when aging is performed in $200^{\circ}C$ to $450^{\circ}C$ temperature range. The purpose of the present study was to evaluate the effect of time and temperature on the stress-strain behavior of cold worked austenitic stainless steels. The amount of ${\alpha}'$-martensite during cold working and aging was examined by ferrite scope and X-ray diffraction (XRD). During aging at $450^{\circ}C$ for 1hr, tensile strength dramatically increased by 150MPa. Deformed metastable austenitic steels containing the "body-centered" ${\alpha}'$-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature.

  • PDF