• Title/Summary/Keyword: Auditory system

Search Result 369, Processing Time 0.026 seconds

Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model (감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.209-214
    • /
    • 2013
  • Improve the recognition performance of speech recognition systems as a method for recognizing human listening skills were incorporated into the system. In noisy environments by separating the speech signal and noise, select the desired speech signal. but In terms of practical performance of speech recognition systems are factors. According to recognized environmental changes due to noise speech detection is not accurate and learning model does not match. In this paper, to improve the speech recognition feature extraction using gamma tone and learning model using acoustic model was proposed. The proposed method the feature extraction using auditory scene analysis for human auditory perception was reflected In the process of learning models for recognition. For performance evaluation in noisy environments, -10dB, -5dB noise in the signal was performed to remove 3.12dB, 2.04dB SNR improvement in performance was confirmed.

The Presence of Neural Stem Cells and Changes in Stem Cell-Like Activity With Age in Mouse Spiral Ganglion Cells In Vivo and In Vitro

  • Moon, Byoung-San;Ammothumkandy, Aswathy;Zhang, Naibo;Peng, Lei;Ibrayeva, Albina;Bay, Maxwell;Pratap, Athira;Park, Hong Ju;Bonaguidi, Michael Anthony;Lu, Wange
    • Clinical and Experimental Otorhinolaryngology
    • /
    • v.11 no.4
    • /
    • pp.224-232
    • /
    • 2018
  • Objectives. Spiral ganglion neurons (SGNs) include potential endogenous progenitor populations for the regeneration of the peripheral auditory system. However, whether these populations are present in adult mice is largely unknown. We examined the presence and characteristics of SGN-neural stem cells (NSCs) in mice as a function of age. Methods. The expression of Nestin and Ki67 was examined in sequentially dissected cochlear modiolar tissues from mice of different ages (from postnatal day to 24 weeks) and the sphere-forming populations from the SGNs were isolated and differentiated into different cell types. Results. There were significant decreases in Nestin and Ki67 double-positive mitotic progenitor cells in vivo with increasing mouse age. The SGNs formed spheres exhibiting self-renewing activity and multipotent capacity, which were seen in NSCs and were capable of differentiating into neuron and glial cell types. The SGN spheres derived from mice at an early age (postnatal day or 2 weeks) contained more mitotic stem cells than those from mice at a late age. Conclusion. Our findings showed the presence of self-renewing and proliferative subtypes of SGN-NSCs which might serve as a promising source for the regeneration of auditory neurons even in adult mice.

Evaluation of Haptic Seat for Vehicle Navigation System (자동차 네비게이션 시스템을 위한 햅틱 시트의 평가에 관한 연구)

  • Chang, Won-suk;Kim, Seok-Hwan;Pyun, Jong-Kweon;Ji, Yong-Gu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.625-629
    • /
    • 2010
  • This study has confirmed that subjective positive and negative aspects a driver feels by applying haptic seat on a vehicle to substantiate vehicle navigation system. Our experiment with total twenty subjects provides that the reaction time (RT) is superior in haptic interface than visual or auditory interface but subjective satisfaction, which subjects feel, and workload is less low in a simulator environment. Although, the difference of individuals and unfamiliarity is relatively high inasmuch as the experiment of absolutely new technology, but overall satisfaction of haptic seat is high. The result of study provides some consideration and direction to need in implementation of a haptic seat and it also confirms their possibility meaningfully. We expect the interaction between a driver and a vehicle and safety improvement potentially through applied haptic seat on actual vehicles.

An Adaptive Speech Enhancement System Using Lateral Inhibition and Time-Delay Neural Network (상호억제와 시간지연 신경회로망을 사용한 적응적인 음성강조시스템)

  • Choi, Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • This paper proposes an adaptive speech enhancement system based on an auditory system to enhance speech that is degraded by various background noises. As such, the proposed system detects voiced and unvoiced sections, adaptively adjusts the coefficients for both the lateral inhibition and the amplitude component according to the detected sections for each input fame, then reduces the noise signal using a time-delay neural network. Based on measuring the signal-to-noise ratio, experiments confirm that the proposed system is effective for speech degraded by various noises.

Utility Estimation of the Application of Auditory-Visual-Tactile Sense Feedback in Respiratory Gated Radiation Therapy (호흡동조방사선치료 시 Real Time Monitor와 Ventilator의 유용성 평가)

  • Jo, Jung Hun;Kim, Byeong Jin;Roh, Shi Won;Lee, Hyeon Chan;Jang, Hyeong Jun;Kim, Hoi Nam;Song, Jae Hun;Kim, Young Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. Materials and Methods: The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor & ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam_time of the respiratory signal. Results: The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. Conclusion: In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule.

  • PDF

Measurement of Neuromagentic Evoked Fields Using Korean Magnetoencephalography system and Its Clinical Application (한국형 뇌자도 시스템을 이용한 유발 자계 측정 및 임상 응용)

  • Kim, Bong Soo;Chang, Won Seok;Hwang, Su-Jeong;Kim, Kiwoong;Kwon, Hyukchan;Yu, Kwon-Kyu;Kim, Jin-Mok;Lee, Yong-Ho;Chang, Jin Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.213-220
    • /
    • 2014
  • Korean magnetoencephalography (MEG) system had been developed and installed to hospital. The Korean MEG system contains helmet-shaped arrays of 152 first-order double relaxation oscillation SQUID (DROS) sensor. As a clinical application we have measured and analyzed evoked responses in patients with functional brain disease by outer stimulation as follows; 1) auditory evoked field in patients with hemifacial spasm, 2) somatosensory evoked fields in patients with tumor. We confirm that neuromagnetic data by Korean MEG system can provide useful information for pre-surgical planning or functional brain research.

Target Speech Segregation Using Non-parametric Correlation Feature Extraction in CASA System (CASA 시스템의 비모수적 상관 특징 추출을 이용한 목적 음성 분리)

  • Choi, Tae-Woong;Kim, Soon-Hyub
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.79-85
    • /
    • 2013
  • Feature extraction of CASA system uses time continuity and channel similarity and makes correlogram of auditory elements for the use. In case of using feature extraction with cross correlation coefficient for channel similarity, it has much computational complexity in order to display correlation quantitatively. Therefore, this paper suggests feature extraction method using non-parametric correlation coefficient in order to reduce computational complexity when extracting the feature and tests to segregate target speech by CASA system. As a result of measuring SNR (Signal to Noise Ratio) for the performance evaluation of target speech segregation, the proposed method shows a slight improvement of 0.14 dB on average over the conventional method.

A semispherical SQUID magnetometer system using high sensitivity double relaxation oscillation SQUIDs for magnetoencephalographic measurements

  • Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kim, Kwoong;Park, Yong-Ki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.

Construction and Operation of a 40-channel SQUID System for Neuromagnetic Measurements (40-채널 SQUID 시스템의 제작 및 뇌자도 측정)

  • Lee, Yong-Ho;Kim, Jin-Mok;Kwon, Hyuk-Chan;Lee, Sang-Kil;Lim, Cheong-Moo;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.27-32
    • /
    • 1999
  • We developed a 40-channel superconducting quantum interference device (SQUID) system for neuromagnetic measurements. The main features of the system are use of double relaxation oscillation SQUID (DROS), and planar gradiometer for measuring tangential field components. The DROSS with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature electronics and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. The average noise of the 40 channels is around 1.2 fT/cm/${\sqrt{Hz}}$ at 100 Hz, corresponding to the field noise of 5 fT/${\sqrt{Hz}}$ at 100 Hz, operated inside a magnetically shielded room. The 40-Channel system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

Construction of a 40-channel SQUID System and Its Application to Neuromagnetic Measurements

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Park, Y.K.;Park, J.C.;Lee, D.H.;Ahn, C.B.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • A 40-channel superconducting quantum interference device (SQUID) system was constructed for measuring neuromagnetic fields. Main features of the system are the use of double relaxation oscillation SQUIDs (DROSs), and planar gradiometers measuring magnetic field components tangential to the head surface. The DROSs with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature dc preamplifiers and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. Average noise level of the 40 channels is around 1.2 $fT/cm/{\surd}Hz$ at 100 Hz, corresponding to a field noise of 5 $fT/{\surd}Hz$, operated inside a magnetically shielded room. The SQUID insert was designed to have low thermal load, minimizing the loss of liquid helium. The constructed system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF