• Title/Summary/Keyword: Au-Nanoparticles

Search Result 241, Processing Time 0.03 seconds

Synergistic Effect of Reductase and Keratinase for Facile Synthesis of Protein-Coated Gold Nanoparticles

  • Gupta, Sonali;Singh, Surinder P.;Singh, Rajni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.612-619
    • /
    • 2015
  • We have synthesized gold nanoparticles (GNPs) using chicken feathers (poultry waste) and Bacillus subtilis RSE163. Disulfide reductase and keratinase produced by Bacillus subtilis during the degradation of chicken feather has been used to reduce Au3+ from HAuCl4 precursor to produce gold nanoparticles. The synthesized biogenic GNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), and zeta potential measurements. Fourier transform infrared (FTIR) spectroscopy indicated the presence of protein capping on synthesized GNPs, imparting multifunctionality to the GNP surface. Furthermore, the nontoxic nature of biogenic GNPs was insured by interaction with Escherichia coli (ATCC11103), where TEM images and enhancement of growth rate of E. coli in log phase signified their nontoxic nature. The results indicate that the synthesis of biocompatible GNPs using poultry waste may find potential applications in drug delivery and sensing.

Substantial Enhancement of the Response and Sensing Speed of WO3 Nanotubes Toward NO2 Gas by Au-functionalization

  • Ko, Hyunsung;Park, Sangbo;Hong, Taeseop;Park, Sunghoon;Lee, Chongmu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.369.1-369.1
    • /
    • 2014
  • Au-functionalized $WO_3$ nanotubes were synthesized using ZnO nanowire templates. Transmission electron microscopy revealed the Au nanoparticles on the outer surface of a typical $WO_3$ nanotube ranged from 5 to 25 nm. The multiple networked Au-functionalized $WO_3$ nanotube sensors showed responses of 820-3, 924% in the $NO_2$ concentration range of 1-5 ppm at $300^{\circ}C$. These responses were approximately 5-12 fold higher than those observed for pristine $WO_3$ nanotube sensors over the same $NO_2$ concentration range. A model describing the gas sensing mechanism of Au-functionalized $WO_3$ nanotubes is discussed.

  • PDF

The Substitution of Inkjet-printed Gold Nanoparticles for Electroplated Gold Films in Electronic Package

  • Jang, Seon-Hui;Gang, Seong-Gu;Kim, Dong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.1-25.1
    • /
    • 2011
  • Over the past few decades, metallic nanoparticles (NPs) have been of great interest due to their unique mesoscopic properties which distinguish them from those of bulk metals; such as lowered melting points, greater versatility that allows for more ease of processability, and tunable optical and mechanical properties. Due to these unique properties, potential opportunities are seen for applications that incorporate nanomaterials into optical and electronic devices. Specifically, the development of metallic NPs has gained significant interest within the electronics field and technological community as a whole. In this study, gold (Au) pads for surface finish in electronic package were developed by inkjet printing of Au NPs. The microstructures of inkjet-printed Au film were investigated by various thermal treatment conditions. The film showed the grain growth as well as bonding between NPs. The film became denser with pore elimination when NPs were sintered under gas flows of $N_2$-bubbled through formic acid ($FA/N_2$) and $N_2$, which resulted in improvement of electrical conductance. The resistivity of film was 4.79 ${\mu}{\Omega}$-cm, about twice of bulk value. From organic anlayses of FTIR, Raman spectroscopy, and TGA, the amount of organic residue in the film was 0.43% which meant considerable removal of the solvent or organic capping molecules. The solder ball shear test was adopted for solderability and shear strength value was 820 gf (1 gf=9.81 mN) on average. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  • PDF

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

Enhancement of Power Conversion Efficiency from Controlled Nanostructure in Polymer Bulk-Hetero Junction Solar Cells

  • Wang, Dong-Hwan;Park, O-Ok;Park, Jong-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.76-76
    • /
    • 2011
  • Polymer-fullerene based bulk heterojunction (BHJ) solar cells can be fabricated in large area using low-cost roll-to-roll manufacturing methods. However, because of the low mobility of the BHJ materials, there is competition between the sweep-out of the photogenerated carriers by the built-in potential and recombination within the thin BHJ film [12-15]. Useful film thicknesses are limited by recombination. Thus, there is a need to increase the absorption by the BHJ film without increasing film thickness. Metal nanoparticles exhibit localized surface plasmon resonances (LSPR) which couple strongly to the incident light. In addition, relatively large metallic nanoparticles can reflect and scatter the light and thereby increase the optical path length within the BHJ film. Thus, the addition of metal nanoparticles into BHJ films offers the possibility of enhanced absorption and correspondingly enhanced photo-generation of mobile carriers. In this work, we have demonstrated several positive effects of shape controlled Au and Ag nanoparticles in organic P3HT/PC70BM, PCDTBT/PC70BM, Si-PCPDTBT/PC70BM BHJ-based PV devices. The use of an optimized concentration of Au and Ag nanomaterials in the BHJ film increases Jsc, FF, and the IPCE. These improvements result from a combination of enhanced light absorption caused by the light scattering of the nanomaterials in an active layer. Some of the metals induce the plasmon light concentration at specific wavelength. Moreover, improved charge transport results in low series resistance.

  • PDF

Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample

  • Zeng, Yanxia;Zhu, Xiashi;Xie, Jiliang;Chen, Li
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.295-312
    • /
    • 2021
  • A new ionic liquid functionalized magnetic silica nanoparticle was synthesized and characterized and tested as an adsorbent. The adsorbent was used for magnetic solid phase extraction on ICP-MS method. Simultaneous determination of precious metal Au has been addressed. The method is simple and fast and has been applied to standard water and surface water analysis. A new method for separation/analysis of trace precious metal Au by Magnetron Solid Phase Extraction (MSPE) combined with ICP-MS. The element to be tested is rapidly adsorbed on CoFe2O4@SiO2@[BMIM]PF6 composite nano-adsorbent and eluted with thiourea. The method has a preconcentration factor of 9.5-fold. This method has been successfully applied to the determination of gold in actual water samples. Hydrophobic Ionic Liquids (ILs) 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6) coated CoFe2O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (CoFe2O4@SiO2@ILs) and establish a new method of MSPE coupled with inductively coupled plasma mass spectrometry for separation/analysis of trace gold. The results showed that trace gold was adsorbed rapidly by CoFe2O4@SiO2@[BMIM]PF6 and eluanted by thiourea. Under the optimal conditions, preconcentration factor of the proposed method was 9.5-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.01~1000.00 ng·mL-1, 0.001 ng·mL-1, 0.9990 and 3.4% (n = 11, c = 4.5 ng·mL-1). The CoFe2O4@SiO2 nanoparticles could be used repeatedly for 8 times. This proposed method has been successfully applied to the determination of trace gold in water samples.

Adsorption Behaviors of Amphiphilic AuNPs at the Interface between Diverse organic Solvents and Water (다양한 유기용매와 물 경계면에서의 양친매성 금나노입자의 흡착 거동)

  • Yeon-Su Lim;Yeong-min Lee;Kyo-Chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.157-161
    • /
    • 2024
  • Amphiphilic gold nanoparticles, synthesized by the simultaneous binding of hydrophilic and hydrophobic ligands on their surfaces, find diverse applications in energy, bio, optical, electronic technologies, and various other fields. Particularly, these amphiphilic gold nanoparticles possess both hydrophilic and hydrophobic characteristics, enabling them to activate interface at the interface of immiscible fluids and form organized structures. The surface properties of gold nanoparticles play a crucial role in influencing the behaviors of amphiphilic gold nanoparticles at the interface of two fluids. Therefore, this study investigated the adsorption behaviors of gold nanoparticles at the organic solvent-water interface based on the surface characteristics of amphiphilic gold nanoparticles and the type of organic solvents. It was observed that the amount of adsorbed gold nanoparticles at the interface increased with the length of hydrocarbon chains in hydrophobic ligands and increased with shorter hydrocarbon chains in the organic solvent. Furthermore, using the Langmuir isotherm model, the study confirmed the formation of a monolayer by amphiphilic gold nanoparticles and obtained significant thermodynamic parameters simultaneously.

Highly catalysis Zinc MOF-loaded nanogold coupled with aptamer to assay trace carbendazim by SERS

  • Jinling Shi;Jingjing Li;Aihui Liang;Zhiliang Jiang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.313-327
    • /
    • 2023
  • Zinc metal organic framework (MOFZn)-loaded goad nanoparticles (AuNPs) sol (Au@MOFZn), which was characterized by TEM, Mapping, FTIR, XRD, and molecular spectrum, was prepared conveniently by solvothermal method. The results indicated that Au@MOFZn had a very strong catalytic effect with the nanoreaction of AuNPs formation between sodium oxalate (SO) and HAuCl4. AuNPs in the new indicator reaction had a strong resonance Rayleigh scattering (RRS) signal at 370 nm. The indicator AuNPs generated by this reaction, which had the most intense surface enhanced Raman scattering (SERS) peak at 1621 cm -1. The new SERS/RRS indicator reaction in combination with specific aptamer (Apt) to fabricate a sensitive and selective Au@MOFZn catalytic amplification-aptamer SERS/RRS assay platform for carbendazim (CBZ), with SERS/RRS linear range of 0.025-0.5 ng/mL. The detection limit was 0.02 ng/mL. Similarly, this assay platform has been also utilized to detect oxytetracycline (OTC) and profenofos (PF).

pH Dependent Size and Size Distribution of Gold Nanoparticles

  • Kang, Aeyeon;Park, Dae Keun;Hyun, Sang Hwa;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.267.2-267.2
    • /
    • 2013
  • In the citrate reduction method of gold nanoparticle (AuNP) synthesis, pH of the reaction mixture can have a considerable impact on the size and size distribution of AuNPs. In this work, effects of pH variation upon the size and its distribution were examined systematically. As the initial pH was change from 5.5 to 10.5, it showed an optimal pH around 7.5. At this pH, both of the size and the size distribution showed their minimum values, which was verified by transmission electron microscopy and UV-vis spectroscopy. This occurrence of optimal pH was discussed with the results of in situ monitoring pH during the reaction of AuNP synthesis.

  • PDF

Preparation of Ag, Pd, and Pt50-Ru50 colloids prepared by γ-irradiation and electron beam and electrochemical immobilization on gold surface

  • Kim, Kyung-Hee;Seo, Kang-Deuk;Oh, Seong-Dae;Choi, Seong-Ho;Oh, Sang-Hyub;Woo, Jin-Chun;Gopalan, A.;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.333-341
    • /
    • 2006
  • PVP-protected Ag, Pd and $Pt_{50}-Ru_{50}$ colloids were prepared independently by using ${\gamma}$-irradiation and electron beam (EB) at ambient temperature. UV-visible spectra of these colloids show the characteristic bands of surface resonance and give evidence for the formation of nanoparticles. Transmission electron microscopy (TEM) experiments were used to know the morphology of nanoparticles prepared by ${\gamma}$-irradiation and EB. The size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by ${\gamma}$-irradiation was ca. 13, 2-3, 15 nm, respectively. While, the size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by EB was ca. 10, 6, and 1-3 nm, respectively. Cyclic voltamograms (CV) were recorded for the Au electrodes immobilized with these nanoparticles. CVs indicated the modifications in the surface as a result of immobilization.