• 제목/요약/키워드: Au-Cu alloy

검색결과 60건 처리시간 0.026초

Microstructure and Magnetic Properties of Au-doped Finemet-type Alloy

  • Le, Anh-Tuan;Kim, Chong-Oh;Ha Nguyen Duy;Chau Nguyen;Tho Nguyen Duc;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • 제11권1호
    • /
    • pp.36-42
    • /
    • 2006
  • In this report, we demonstrate a comprehensive analysis of the effects of Au addition on the microstructure and magnetic properties of $Fe_{73.5}Si_{13.5}B_{9}Nb_{3}Au_1$ Finemet-type alloy. It was found that the as-quenched alloys were the amorphous state and turned into nanocrystalline state under heat treatments. The DSC analysis indicates that the sharply exothermal peak corresponding to the crystallization of the $\alpha-Fe(Si)$ was observed at $547-579^{\circ}C$ depending on the heating rates, which is little higher than that of original Finemet (542-$570{^{\circ}C}$, respectively). Besides, the thermomagnetic result confirmed that the full substitution of Cu by Au with the single phase structure in the M(T) curve along cooling cycle. Ultrasoft magnetic properties of the nanocrystallized samples were significantly enhanced by the proper annealing such as the increase of permeability and the decrease of the coercivity. The optimum annealing condition was found at the annealing temperature of $540^{\circ}C$ and the increase of the annealing time up to 90 min.

Au-Ag-Cu-Pd합금과 복합레진간의 접착결합강도에 관한 연구 (A STUDY ON THE ADHESIVE BOND STRENGTH OF COMPOSITE RESIN TO Au-Ag-Cu-Pd ALLOY)

  • 설영훈;정창모;전영찬
    • 대한치과보철학회지
    • /
    • 제32권3호
    • /
    • pp.378-395
    • /
    • 1994
  • The purpose of this study was to investigate the effect of various metal surface treatments and adhesive systems on the flexural bond strength of composite resin to Au-Ag-Cu-Pd alloy. The specimens were divided into nine groups by the combinations of surface treatment methods and adhesive systems. The types of surface treatment in this study were alumina blasting only, alumina blasting-Sn plating, alumina blasting-heating and three kinds of adhesive system used in this study were Silicoater system(Heraeus Kulzer GmbH,Germany), Superbond C & B(Sun Medical Co.,Ltd.,Japan) and Cesead opaque primer(Kurary Co.,Ltd.,Japan). After surface treatments and adhesive systems were applied, each specimen was built up with Dentacolor composite resin (Heraeus Kulzer GmbH,Germany). Four-point flexural bond strength was measured by Instron universal testing machine (Model 4301,U.S.A.) and modes of failure were observed by SEM(JEOL,SSM-840A,Japan). The obtained results were as follows: 1. The group that was bonded with Superbond C & B after alumina blasting-heating shelved the highest bond strength with significant difference among the groups, except the group with Cesead opaque primer after alumina blasting-Sn plating(P<0.05). 2. In the groups bonded with Cesead opaque primer, there was significant difference only in the bond strength between the alumina blasting-Sn plating group and alumina blasting group, where the former showed a higher bond strength(P<0.05). 3. In the groups bonded with Silicoater system, there were no significant differences in bond strength regardless of the surface treatment method(P<0.05). 4. In SEM evaluation, the groups of high bond strength, especially bonded with Superbond C & B after alumina blasting-heating and Cesead opaque primer after alumina blasting-Sn plating, revealed mainly cohesive-adhesive failure, whereas the others showed the tendency of adhesive failure.

  • PDF

Board Level Reliability Evaluation for Package on Package

  • 황태경
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2007년도 SMT/PCB 기술세미나
    • /
    • pp.37-47
    • /
    • 2007
  • Factor : Structure Metal pad & SMO size Board level TC test : - Large SMO size better Board level Drop test : - Large SMO size better Factor : Structure Substrate thickness Board level TC test : - Thick substrate better Board level Drop test : - Substrate thickness is not a significant factor for drop test Factor : Material Solder alloy Board level TC test : - Not so big differences over Pb-free solder and NiAu, OSP finish Board level Drop test : - Ni/Au+SAC105, CuOSP+LF35 are better Factor : Material Pad finish Board level TC test : - NiAu/NiAu is best Board livel Drop test : - CuOSP is best Factor : Material Underfill Board level TC test - Several underfills (reworkable) are passed TCG x500 cycles Board level Drop test : - Underfill lots have better performance than non-underfill lots Factor : Process Multiple reflow Board level TC test : - Multiple reflow is not a significant actor for TC test Board level Drop test : N/A Factor : Process Peak temp Board level TC test : - Higher peak temperature is worse than STD Board level Drop test : N/A Factor : Process Stack method Board level TC test : - No big difference between pre-stack and SMT stack Board level Drop test : - Flux dipping is better than paste dipping but failure rate is more faster

  • PDF

다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력 (Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures)

  • 민순기;이준호
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.13-17
    • /
    • 2009
  • A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were $2.86{\times}10^{-12}$$1.24{\times}10^{-9}$ Pa for the Ag-Sn system and $2.27{\times}10^{-11}$$5.68{\times}10^{-4}$ Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at $X_{Ag}$ = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.

미륵사지 출토 고대 금동유물의도금기법에 관한 연구 (Study for the Film Coating Techniqur of Gilt Bronze Artifacts from Mir ksa Temple)

  • 임선기;강대일;김선덕;박동규;강성군
    • 보존과학연구
    • /
    • 통권14호
    • /
    • pp.45-76
    • /
    • 1993
  • Au-Cu alloyed coating layer were found by Hg-amalgam process and it seemed to be used Cu-amalgam process similar to Au-amalgam. Coated layer is dense and unique, Thickness of layer was 1.5 to $18.0\mum$ which had 95.3 to 99.8% purity of gold Matrix metal mostly cosists of forged copper alloy which had high purity and ferrite ($\alpha$) strusture. It showed excellent refining technical level at that time. Aowever, the nail, ferrous matrix used for strength needed, composed of silver foil packed and gold layer for adherence between ferrous matrix and gold layer

  • PDF

PCB Pad finish 방법에 따른 solder의 Board level joint reliability (Board level joint reliability of differently finished PWB pad)

  • 이왕주
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2004년도 국제표면실장 및 인쇄회로기판 생산기자재전:전자패키지기술세미나
    • /
    • pp.37-59
    • /
    • 2004
  • In the case of Ni/Au finished pad on the package side, the solder joint of SnAgCu system can bring brittle fracture under impact load such as drop test. Therefore, it's difficult to prevent the brittle fracture of lead-free solder, by controlling Cu content. The failure locus existing on the interface between $(Ni,Cu)_3Sn_4\;and\;(Cu,Ni)_6Sn_5$ IMC layers must be changed to other site in order to avoid brittle fracture due to impact load. It was not found any clear evidence that there were two IMC layers exist. But it was strongly assumed these were two layers which have different Cu-Ni composition. From the above analysis it was assumed that Cu atom in the solder alloy or substrate seemed to affect IMC composition and cause to IMC brittle fracture.

  • PDF

팔라듐 표면처리를 통한 Massive Spalling 현상의 억제 (Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish)

  • 이대현;정보묵;허주열
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

비정질 분말의 열간 성형법에 의한 벌크 비정질합금의 제조 (Fabrication of Bulk Metallic Glass Alloys by Warm Processing of Amorphous Powders)

  • 이민하;김도향
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.193-201
    • /
    • 2004
  • 1960년 Au-Si계 합금에서 처음으로 비정질상이 급속 응고법에 의해 보고된 이래/sup 1)/ 지난 40년 간 많은 합금계에서 비정질상이 보고되어졌다. 대표적으로 Fe-, Ni-, Co기 합금 등 많은 합금계에서 비정질상이 보고되었으나, 비정질상의 형성을 위해서는 약 105 K/s이상의 높은 냉각속도를 필요로 하였다. 1980년대 수백 K/s의 낮은 냉각속도 하에서도 비정질상이 형성될 수 있는 다원계 합금(multi-component alloy)이 Mg-Ln-(Ni, Cu, Zn), Ln-Al-TM 합금에서 보고되어 졌으나 많은 관심을 받지 못하다가 1993년 Zr-Ti-Ni-Cu-Be 합금에서 수 ㎝ 크기의 비정질합금 제조가 보고되면서 전 세계적으로 많은 관심을 받게 되었다. Zr-Ti-Ni-Cu-Be계 벌크 비정질 합금이 보고된 후 Zr-(Nb,Pd)-Al-TM, Pd-Cu-Ni-P, Fe-Co-Zr-Mo-W-B, Ti-Zr-Ni-Cu-Sn등 여러 합금계에서 벌크 비정질 합금이 보고되었다. (중략)

무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구 (A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump)

  • 전영두;백경욱
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF

팔라디움-은합금에 의한 도재의 색조변화 및 변색작용에 관한 연구 (A STUDY ON THE COLOR CHANCE OF CERAMIC BY Pd-Ag ALLOY AND MECHANISM)

  • 윤수선;이선형;양재호;정헌영
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.123-141
    • /
    • 1989
  • The purpose of this study was to investigate the tendency of color change of ceramic, and its mechanism un der the influence of Pd-Ag alloy. The specimens were made by firing porcelain on tile metal plates cast with Au-Pt alloy, Pd-Cu alloy and Pd-Ag alloy. In the case of Pd-Ag alloy, specimens were fired under three different conditions as follows, 1) without protection, 2) protection with ceramic metal conditioner, 3) protection with carbon block. For the specimens of element analysis, a barrier was constructed with platinum foil between metal plate and ceramic. Color change was measured with colorimeter and elemental changes in ceramic were calculated with DC argon plasma emission spectrophotometer. The results were as follows : 1. Color change of ceramic by Pd-Ag alloy was negligible in hue, but decreased in value and increased in chroma (yellow discoloration). 2. Color change of ceramic by Pd-Ag alloy was appeared through vapor transport mechanism. 3. As the protection method for the color change of ceramic by Pd-Ag alloy, application of ceramic metal conditioner was superior to utilization of carbon block.

  • PDF