• Title/Summary/Keyword: Au thin film

Search Result 302, Processing Time 0.027 seconds

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.

Quantitative analysis of hydrogen in thin film by scattering-recoil co-measurement technique (산란-되튐 동시 측정 방법에 의한 박막 중 수소 정량법)

  • Lee, Hwa-Ryun;Eum, Chul Hun;Choi, Han-Woo;Kim, Joonkon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.400-406
    • /
    • 2006
  • Hydrogen analysis by elastic recoil detection has been performed utilizing polyimide film as a reference sample of known hydrogen content assuming the soundness of ion beam current integration. However beam current integration at higher incidence angle is not reliable. Scattering yield per unit fluence by current integration which is normalized per unit path length decreases as the sample tilt angle is getting higher. Moreover because beam current integration at high tilt angle is incomplete, hydrogen evaluation is very risky by direct comparison of sequentially collected recoil spectra between reference and target sample. In this study, primary ion beam dose is determined by backscattering spectrum that is collected simultaneously with recoil spectrum instead of ion beam current integration in order to reduce uncertainty arising in the process of current integration and to enhance the reliability of quantitative analysis. Three test samples are selected $-7.6{\mu}m$ polyimide film, hydrogen implanted silicondioxide and Au deposited carbon wafer- and analyzed by two methods and compared.

Fabrication of Thin Film Inductors Using Ni-Zn Ferrite Core (Ni-Zn 페라이트 박막을 이용한 박막 인덕터의 제조)

  • Kim, Min-Heung;Yeo, Hwan-Gun;Hwang, Gi-Hyeon;Lee, Dae-Hyeong;Yun, Ui-Jun;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.6 no.1
    • /
    • pp.22-28
    • /
    • 1996
  • 고주파 이동통신의 효용이 증가할수록 고주파 회로에 들어가는 부품들의 소형화가 중요한 과제로 대두되고 있다. 인덕터는 전자회로에 이용되는 주요 부품의 하나이며, 현재 교주파용 소형 인덕터를 박막화하려는 시도가 진행중이다. 본 연구에서 열산화시킨 Si(100)기판위에 성공적으로 박막형 인덕터를 제조하였다. Core 물질로는 ion beam sputtering 법으로 증착한 Ni-Zn 페라이트와 PECVD법으로 증착한 SiO2를 사용하였다. 고온산화분위기의 박막 증착과정을 고려하여 귀금속류인 Au를 전극으로 이용하였으며, life-off법으로 미세회로를 구현하였다. 상하부 전극의 안정적인 연결을 위하여 2차 전극배선 전에 via를 채워넣었다. 제조된 박막 인덕터의 고주파 특성은 network analyzer로 측정한 후 HP사의 Mecrowave Design System으로 분석하였다.

  • PDF

Fabrication of Plasmon Subwavelength Nanostructures for Nanoimprinting

  • Cho, Eun-Byurl;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.247-247
    • /
    • 2012
  • Plasmon subwavelength nanostructures enable the structurally modulated color due to the resonance conditions for the specific wavelength range of light with the nanoscale hole arrays on a metal layer. While the unique properties offered from a single layer of metal may open up the potential applications of integrated devices to displays and sensors, fabrication requirements in nanoscale, typically on the order of or smaller than the wavelength of light in a corresponding medium can limit the cost-effective implementation of the plasmonic nanostructures. Simpler nanoscale replication technologies based on the soft lithography or roll-to-roll nanoimprinting can introduce economically feasible manufacturing process for these devices. Such replication requires an optimal design of a master template to produce a stamp that can be applied for a roll-to-roll nanoimprinting. In this paper, a master mold with subwavelength nanostructures is fabricated and optimized using focused ion beam for the applications to nanoimprinting process. Au thin film layer is deposited by sputtering on a glass that serves as a dielectric substrate. Focused ion beam milling (FIB, JEOL JIB-4601F) is used to fabricate surface plasmon subwavelength nanostructures made of periodic hole arrays. The light spectrum of the fabricated nanostructures is characterized by using UV-Vis-NIR spectrophotometer (Agilent, Cary 5000) and the surface morphology is measured by using atomic force microscope (AFM, Park System XE-100) and scanning electron microscope (SEM, JEOL JSM-7100F). Relationship between the parameters of the hole arrays and the corresponding spectral characteristics and their potential applications are also discussed.

  • PDF

3차원 LTCC 기판을 이용한 압전 압력 센서의 제작 및 연구 특성

  • Heo, Won-Yeong;Hwang, Hyeon-Seok;U, Hyeong-Gwan;Lee, Tae-Yong;Lee, Gyeong-Cheon;Sim, Deung;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.118-118
    • /
    • 2009
  • Low temperature co-fired ceramic (LTCC) is one of promising materials for MEMS structures because it has very good electrical and mechanical properties as well as possibility of making various three dimensional (3D) structures. In this work, piezoelectric pressure sensors based on hybrid LTCC technology were presented. The LTCC diaphragms with thickness of 400 um were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The piezoelectric sensing layer consists of $Pb(ZrTi)O_3$ (PZT) thin film deposited by RF magnetron sputtering method on between top and bottom Au electrodes. The results showed that the fabrication method is very suitable for pressure sensor applications. The PZT films deposited on LTCC diaphragms were successfully grown and were analyzed by using X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM).

  • PDF

High Performance Wilkinson Power Divider Using Integrated Passive Technology on SI-GaAs Substrate

  • Wang, Cong;Qian, Cheng;Li, De-Zhong;Huang, Wen-Cheng;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.129-133
    • /
    • 2008
  • An integrated passive device(IPD) technology by semi-insulating(SI)-GaAs-based fabrication has been developed to meet the ever increasing needs of size and cost reduction in wireless applications. This technology includes reliable NiCr thin film resistor, thick plated Cu/Au metal process to reduce resistive loss, high breakdown voltage metal-insulator-metal(MIM) capacitor due to a thinner dielectric thickness, lowest parasitic effect by multi air-bridged metal layers, air-bridges for inductor underpass and capacitor pick-up, and low chip cost by only 6 process layers. This paper presents the Wilkinson power divider with excellent performance for digital cellular system(DCS). The insertion loss of this power divider is - 0.43 dB and the port isolation greater than - 22 dB over the entire band. Return loss in input and output ports are - 23.4 dB and - 25.4 dB, respectively. The Wilkinson power divider based on SI-GaAs substrates is designed within die size of $1.42\;mm^2$.

Glucose Sensors Using Lipoic Acid Self-Assembled Monolayers

  • Kim, Ji Yeong;Nakayama, Tadachika;Kim, Jae-Hun;Kim, Sang Sub
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.295-298
    • /
    • 2014
  • A novel approach to fabricating high-performance glucose sensors is reported, which is based on the process of self-assembled monolayers (SAMs). In this study, we have particularly used ${\alpha}$-lipoic acid (LA) SAMs for the glucose sensors. To our best knowledge, this study is the first one to use LA as SAMs for this purpose. N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were deliberately attached at the same time on the LA SAM. Then, glucose oxidase ($GO_X$) and horseradish peroxidase (HRP) were sequentially immobilized. Thus, the HRP/$GO_X$/NHS-EDC/LA-SAM/Au/Cr/glass working electrode was developed. The glucose-sensing capability of the fabricated sensor was systematically measured by the use of cyclic voltammetry in the range of 1-30 mM glucose in phosphate-buffered saline. The result showed a good sensitivity, that is, as high as $27.5{\mu}A/(mM{\cdot}cm^2)$. This result conspicuously demonstrates that LA can be one of promising substances for use as SAMs for accurately monitoring trace levels of glucose concentration in human blood.

Printing Technologies for the Gate and Source/Drain Electrodes of OTFTs

  • Lee, Myung-Won;Lee, Mi-Young;Song, Chung-Kun
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2009
  • This is a report on the fabrication of a flexible OTFT backplane for electrophoretic display (EPD) using a printing technology. A practical printing technology for a polycarbonate substrate was developed by combining the conventional screen and inkjet printing technologies with the wet etching and oxygen plasma processes. For the gate electrode, the screen printing technology with Ag ink was developed to define the minimum line width of ${\sim}5{\mu}m$ and the thickness of ${\sim}70nm$ with the resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, which are suitable for displays with SVGA resolution. For the source and drain (S/D) electrodes, PEDOT:PSS, whose conductivity was drastically enhanced to 450 S/cm by adding 10 wt% glycerol, was adopted. In addition, the modified PEDOT:PSS could be neatly confined in the specific S/D electrode area that had been pretreated with oxygen. The OTFTs that made use of the developed printing technology produced a mobility of ${\sim}0.13cm^2/Vs.ec$ and an on/off current ratio of ${\sim}10^6$, which are comparable to those using thermally evaporated Au for the S/D electrode.

LTCC 기판을 이용한 PZT 압력 센서의 제작 및 특성 연구

  • Heo, Won-Yeong;Hwang, Hyeon-Seok;Lee, Tae-Yong;Lee, Gyeong-Cheon;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.13-13
    • /
    • 2010
  • Piezoelectric sensors are extensively used to measure force because of their high sensitivity and low cost. however, the development of device with reduced size but with improved sensitivity is highly important. Low-temperature co-fired ceramic (LTCC) is one of promising materials for this application than a silicon substrate because it has very good electrical and mechanical properties as well as possibility of making various three dimensional (3D) structures. In this work, piezoelectric pressure sensors based on hybrid LTCC technology were presented. The LTCC diaphragms with thickness of $400\;{\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The piezoelectric sensing layer consists of PZT thin film deposited by RF magnetron sputtering method on between top and bottom Au electrodes. The PZT films deposited on LTCC diaphragms were successfully grown and were analyzed by using X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM).

  • PDF

Fabrication of Etched Graphene/CuO Nanowires as Field Effect Transistors

  • Hien, Vu Xuan;Kim, Se-Yun;Kim, MyeongEon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.430-430
    • /
    • 2013
  • Field effect transistor based on semiconductor nanowires has been attracting lots of concerns and studies of scientists because of its different characteristic comparing with other morphology like thin film. Nowadays, graphene is introducing a great promise as an active layer in field effect transistor due to its unique electronic and optoelectronic properties. Thus, a mix structure between etched graphene and semiconductor nanowires is believed to expose novel electrical characteristics. In this study, CuO nanowires (20~80 nm in diameter and $1{\sim}10{\mu}m$ length) were grown during oxidizing Cu foil at $450^{\circ}C$ for 24 h. Besides, 3-layersetched graphene was deposited on Cu foil at $1,000^{\circ}C$ using a feedstock of $CH_4$/$H_2$ mixed gas in CVD system. A structure of Ni/Au electrode + CuO nanowires + etched graphene was fabricated, afterward. Finally, field effect properties of the device was revealed and compared with individual devices of just nanowires and just graphene.

  • PDF