• Title/Summary/Keyword: Au thin film

Search Result 302, Processing Time 0.028 seconds

MEMS-based Micro Fluxgate Sensor Using Solenoid Excitation and Pick-up Coils (MEMS 공정 제작방법에 의한 솔레노이드형 여자 코일과 검출코일을 사용한 마이크로 플럭스게이트 센서)

  • 나경원;박해석;심동식;최원열;황준식;최상언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.120-124
    • /
    • 2003
  • This paper describes a MEMS-based micro-fluxgate magnetic sensing element using Ni$\_$0.8/Fe$\_$0.2/ film formed by electroplating. The micro-fluxgate magnetic sensor composed of a thin film magnetic core and micro-structure solenoids for the pick-up and the excitation coils, is developed by using MEMS technologies in order to take advantage of low-cost, small size and lower power consumption in the fabrication. A copper with 20${\mu}$m width and 3${\mu}$m thickness is electroplated on Cr (300${\AA}$) / Au (1500${\AA}$) films for the pick-up (42turn) and the excitation (24turn) coils. In order to improve the sensitivity of the sensing element, we designed the magnetic core into a rectangular-ring shape to reduce the magnetic flux leakage. An electroplated permalloy film with the thickness of 3${\mu}$m is obtained under 2000 gauss to induce magnetic anisotropy. The magnetic core has the high DC effective permeability of ~1,100 and coercive field of ~0.1 Oe. The fabricated sensing element using rectangular-ring shaped magnetic film has the sensitivity of about 150 V/T at the excitation frequency of 2 MHz and the excitation voltage of 4.4 V$\_$p p/. The power consumption is estimated to be 50mW.

Surface-enhanced infrared detection of benzene in air using a porous metal-organic-frameworks film

  • Kim, Raekyung;Jee, Seohyeon;Ryu, Unjin;Lee, Hyeon Shin;Kim, Se Yun;Choi, Kyung Min
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.6
    • /
    • pp.975-980
    • /
    • 2019
  • Infrared (IR) spectroscopy is a powerful technique for observing organic molecules, as it combines sensitive vibrational excitations with a non-destructive probe. However, gaseous volatile compounds in the air are challenging to detect, as they are not easy to immobilize in a sensing device and give enough signal by themselves. In this study, we fabricated a thin nanocrystalline metal-organic framework (nMOF) film on a surface plasmon resonance (SPR) substrate to enhance the IR vibration signal of the gaseous volatile compounds captured within the nMOF pores. Specifically, we synthesized nanocrystalline HKUST-1 (nHKUST-1) particles of ca. 80 nm diameter and used a colloidal dispersion of these particles to fabricate nHKUST-1 films by a spin-coating process. After finding that benzene was readily adsorbed onto nHKUST-1, an nHKUST-1 film deposited on a plasmonic Au substrate was successfully applied to the IR detection of gaseous benzene in air using surface-enhanced IR spectroscopy.

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates (증착 속도에 따른 펜타센 박막 트랜지스터의 성능 연구)

  • Hwang, Jinho;Kim, Duri;Kim, Meenwoo;Lee, Hanju;Babajanyan, Arsen;Odabashyan, Levon;Baghdasaryan, Zhirayr;Lee, Kiejin;Cha, Deokjoon
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1192-1195
    • /
    • 2018
  • We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.

Formation of SiOF Thin Films by FTES/$O_2$-PECVD Method (FTES/$O_2$-PECVD 방법에 의한 SiOF 박막형성)

  • Kim, Duk-Soo;Lee, Ji-Hyeok;Lee, Kwang-Man;Gang, Dong-Sik;Choe, Chi-Kyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.825-830
    • /
    • 1999
  • Characteristics of SiOF films deposited by a FTES/$O_2$-plasma enhanced chemical vapor deposition method have been investigated using Fourier transform infrared spectroscopy, X-ray photoelectro spectroscopy, and ellipsometry. Electrical properties such as dielectric constant, dielectric breakdown and leakage current density are investigated using C-V and I-V measurements with MIS(Au/SiOF/p-Si) capacitor structure. Stepcoverage of the films have been also characterized using scanning electron microscopy and ellipsometry. A high quality SiOF film was formed on that the flow rates of FTES and $O_2$were 300sccm, respectively. The dielectric constant of the deposited SiOF film was about 3.1. This value is lower than that of the oxide films obtained using other method. The dielectric breakdown field and leakage current are more than 10MV/cm and about $8[\times}10^{9}A/\textrm{cm}^2$, respectively. The deposited SiOF film with thickness as $2500{\AA}$ on the $0.3{\mu}{\textrm}{m}$ metal pattern shows a high step-coverage without a void.

  • PDF

Low-resistance ohmic contacts to p-$Hg_{0.7}$$Cd_{0.3}$Te (p-$Hg_{0.7}$$Cd_{0.3}$Te에 낮은 저항의 접촉을 얻는 방법에 대한 연구)

  • Kim, Kwan;Chung, Han;Kim, Sung-Chul;Lee, Hee-Chul;Kim, Choong-Ki;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.87-93
    • /
    • 1994
  • Ohmic contacts between Au and p-HgHg_{0.7}Cd_{0.3}Te$ with low specific contact resistance have been obtained. The contact region of the wafer is first pre-heated for 5 seconds in a rapid thermal processing equipment. The temperature reaches a maximum value of about 200$^{\circ}C$ at the end of the 5 seconds. Next, a thin Au film is formed on the contact region by immersing the sample in AuCl$_{3}$ solution. the sample is then post-annealed in the same condition as the pre-heating after Pb/In pad metals are deposited on the electroless Au contacts. The specific contact resistance measured by transmission line model is 5${\times}10^{-3}{\Omega}cm^{2}$ at 80K. RBS and differential Hall measurement data suggest that the above low resistance ohmic contact is ascribed to surface traps and increased gold diffusion rate.

  • PDF

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

Fabrication of Si Nano Dots by Using Diblock Copolymer Thin Film (블록 공중합체 박막을 이용한 실리콘 나노점의 형성)

  • Kang, Gil-Bum;Kim, Seong-Il;Kim, Young-Hwan;Park, Min-Chul;Kim, Yong-Tae;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.17-21
    • /
    • 2007
  • Dense and periodic arrays of holes and Si nano dots were fabricated on silicon substrate. The nanopatterned holes were approximately $15{\sim}40nm$ wide, 40 nm deep and $40{\sim}80\;nm$ apart. To obtain nano-size patterns, self?assembling diblock copolymer were used to produce layer of hexagonaly ordered parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene(PS) matrix. The PMMA cylinders were degraded and removed with acetic acid rinse to produce a PS. $100\;{\AA}-thick$ Au thin film was deposited by using e-beam evaporator. PS template was removed by lift-off process. Arrays of Au nano dots were transferred by using Fluorine-based reactive ion etching(RE). Au nano dots were removed by sulfuric acid. Si nano dots size and height were $30{\sim}70\;nm$ and $10{\sim}20\;nm$ respectively.

  • PDF

Ferroelectric Properties of $(Pb_{0.9}Ca_{0.1})TiO_3$ Thin Films by Sol-Gel Processing (졸-겔법에 의한 $(Pb_{0.9}Ca_{0.1})TiO_3$ 박막의 강유전 특성)

  • Kim, Haeng-Koo;Chung, Su-Tae;Lee, Jong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.138-145
    • /
    • 1998
  • The $(Pb_{0.9}Ca_{0.1})TiO_3$[PCT] thin films have been deposited by sol-gel processing on Si-wafer and ITO glass substrates. The creak-free films have been obtained by rapid thermal annealing at $700^{\circ}C$ for 10 minute and characterized by XRD, SEM and electrical measurements. Their tetragonality c/a was 1.041 and grain size was $0.15{\sim}0.2{\mu}m$. When the electrode system of sample was Au/PCT/ITO(MFM) and film thickness was $0.8{\mu}m$, dielectric constant, dielectric loss and Curie temperature were about 149, 0.085 and $449^{\circ}C$ at 10kHz, respectively. Spontaneous polarization $P_s$, remnant polarization $P_r$ and coercive field $E_c$ were about $5.29{\mu}C/cm^2$, $4.15{\mu}C/cm^2$ and 82kV/cm calculated by hysteresis loop.

  • PDF

Electrochemistry and Direct Conductivity Determination of Thin Films of Prussian Blue

  • 문성배;김영인
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.511-515
    • /
    • 1995
  • Since much studies have been performed concerning the electrochemical behaviors and the practical applications of PB based devices, little has yet reported to investigate the best condition for the preparation for PB thin films. As considered some factors(peak shape, peak current, and peak separation) from the i-V curves, the optimal condition in the film growth were investigated under various immersion solutions. An electron-transfer processes of Fe2+/Fe3+ and Fe(CN)63-/4- redox couples were considered by measuring the observed currents as a function of the rotation velocity. The standard heterogeneous electron-transfer rates for these films and bare Au disc electrode in 10-3 M Fe2+/Fe3+ solution, applied at +0.65 V vs. SCE, were 6.14 × 10-3 and 7.78 × 10-3 cm/s, respectively, obtained using a rotating disc electrode. In case of the addition of potassium ion, the rate constants for these Fe2+/Fe3+ system on thin films of PB and bare electrode were given a little high values. The electron transfer rate for 10-3 M Fe(CN)63-/4- were 4.55 × 10-3 and 6.84 × 10-3 cm/s, respectively. The conductivity as directly determined during obtained the voltammogram, was 2.2 × 10-7 (Ω·cm)-1. This value is similar magnitude to that calculated from bulk sample.

Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film (InGaP/GaAs 이중접합 기반의 고효율 플렉시블 태양전지 제조기술 연구)

  • Moon, Seungpil;Kim, Youngjo;Kim, Kangho;Kim, Chang Zoo;Jung, Sang Hyun;Shin, Hyun-Beom;Park, Kyung Ho;Park, Won-Kyu;Ahn, Yeon-Shik;Kang, Ho Kwan
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2016
  • III-V compound semiconductor based thin film solar cells promise relatively higher power conversion efficiencies and better device reliability. In general, the thin film III-V solar cells are fabricated by an epitaxial lift-off process, which requires an $Al_xGa_{1-x}As$ ($x{\geq}0.8$) sacrificial layer and an inverted solar cell structure. However, the device performance of the inversely grown solar cell could be degraded due to the different internal diffusion conditions. In this study, InGaP/GaAs double-junction solar cells are inversely grown by MOCVD on GaAs (100) substrates. The thickness of the GaAs base layer is reduced to minimize the thermal budget during the growth. A wide band gap p-AlGaAs/n-InGaP tunnel junction structure is employed to connect the two subcells with minimal electrical loss. The solar cell structures are transferred on to thin metal films formed by Au electroplating. An AlAs layer with a thickness of 20 nm is used as a sacrificial layer, which is removed by a HF:Acetone (1:1) solution during the epitaxial lift-off process. As a result, the flexible InGaP/GaAs solar cell was fabricated successfully with an efficiency of 27.79% under AM1.5G illumination. The efficiency was kept at almost the same value after bending tests of 1,000 cycles with a radius of curvature of 10 mm.