• Title/Summary/Keyword: Au dissolution

Search Result 28, Processing Time 0.029 seconds

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Preparation and Bioequivalence Test of Acetaminophen Liquid Suppository (아세트아미노펜 액상좌제의 제초 및 생물학적 동등성 평가)

  • 김종국;최한곤;이사원;고종호;이미경
    • Biomolecules & Therapeutics
    • /
    • v.6 no.2
    • /
    • pp.213-218
    • /
    • 1998
  • A novel in situ-gelling and mucoadhesive acetaminophen liquid suppository was developed to improve the patient compliance of conventional solid suppository. In this study, acetaminophen liquid suppository, Likipe $n_{R}$, [aminophen/Poloxamer 407/Poloxamer 188/so4ium alginate (5/15/19/0.6%)] with relation temperature at 30-36 "C and suitable gel strength and bioadhesive force, dissolution pattern similar to conventional solid type suppository, Suspe $n_{R}$, was developed. Furthermore, the bioequivalence of two acetaminophen products was evaluated in 16 normal male volunteers (age 22-27 yr, body weight 56-72 kg) following sidle rectal administration. Test product was Likipe $n_{R}$ suppository (Dong-Wha Pharm. Corp., Korea)and reference product was Suspe $n_{R}$204-212 suppository (Hanmi Pharm. Corp., Korea). Both products contain 125 mg of acetaminophen. Four Suppositories of the test and the reference product were administered to the volunteers, respectively, by randomized two period cross-over study (2$\times$2 Latin square method). The determination of acetaminophen was accomplished using HPLC. Average drug concentrations at each sampling time and pharmacokinetic parameters calculated were not significantly different between two products (p>0.05); the area under the curve to last sampling time (24 hr) (AU $Co_{-2}$4h/) (30.14$\pm$8.64 vs 27.98$\pm$ 6.53 $\mu$g .h/ml), maximum plasma concentration ( $C_{max}$) (3.29$\pm$0.87 vs 3.60$\pm$0.66 $\mu$g/ml) and time to maximum plasma concentration ( $T_{max}$) (2.91 $\pm$0.55 vs 2.69$\pm$0.60 h). The differences of mean AUCo $_{24h}$, C-a. and T-between the two products (7.18%, 9.58% and 7.53%, respectively) were less than 20%. The power (1-7) and treatment difference ($\Delta$) for AU $Co_{24h}$, $C_{max}$ and $T_{max}$ were more than 0.8 and less than 0.2, respectively at $\alpha$=0.1. The confidence limits for AU $Co_{24h}$, $C_{max}$ and $T_{max}$ (-0.81 ~13.55%, -1.56~ 17.60 and -3.81 ~18.87%, respectively) were less than $\pm$ 20% at $\alpha$=0.1. These results suggest that the bioavailability of Likipe $n_{R}$ suppository is not significantly different from that of Suspe $n_{R}$ suppsitory. Therefore, two products are bio-equivalent based on the current results.results.lts.sults.results.lts.

  • PDF

Leaching of the Mixture of Metallic Gold and Silver (금과 은 금속혼합물의 침출)

  • Xing, Weidong;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • In order to exclude the effect of uneven distribution of gold in anode slime, the dissolution of gold and silver from the metal mixture was investigated in different systems, such as the mixture of hydrochloric acid and oxidizing reagents ($H_2O_2$, NaClO and $HNO_3$), thiosulfate and thiourea. In the mixture of HCl and either $HNO_3$ or $H_2O_2$, Au was completely dissolved but the leaching percentage of Ag was around 1%. In both thiosulfate and thiourea solution, gold was not dissolved at all. The presence of ferric ion in acidic thiourea solution showed a favorable effect on the leaching of silver but further study is necessary to elucidate the combined effect of ferric ion and sulfuric acid.

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

Charge Neutral Quasi-Free-Standing Graphene on 6H-SiC(0001) Surface by Pd Silicidation and Intercalation

  • Song, In-Gyeong;Sin, Ha-Cheol;Park, Jong-Yun;An, Jong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.128-128
    • /
    • 2012
  • We investigated the atomic and electronic properties of graphene grown by Pd silicidation and intercalation using LEED, STM, and ARPES. Pd was deposited on the 6H-SiC(0001) surface at RT. The formation of Pd silicide gives rise to breaking of Si-C bonds of the SiC crystal, which enables to release C atoms at low temperature. The C atoms are transformed into graphene from $860^{\circ}C$ according to the LEED patterns as a function of annealing temperature. Even though the graphene spots were observed in the LEED pattern and the Fourier transformed STM images after annealing at $870^{\circ}C$, the topography images showed various superstructures so that graphene is covered with Pd silicide residue. After annealing at $950^{\circ}C$, monolayer graphene was revealed at the surface. The growth of graphene is not limited by surface obstacles such as steps and defects. In addition, we observed that six protrusions consisting of the honeycomb network of graphene has same intensity meaning non-broken AB-symmetry of graphene. The ARPES results in the vicinity of K point showed the non-doped linear ${\pi}$ band structure indicating monolayer graphene decoupled from the SiC substrate electronically. Note that the charge neutrality of graphene grown by Pd silicidation and intercalation was sustained regardless of annealing temperature in contrast with quasi-free- standing graphene induced by H and Au intercalation. Further annealing above $1,000^{\circ}C$ accelerates sublimation of the Pd silicide layer underneath graphene. This results in appearance of the $(6r3x6r3)R30^{\circ}$ structure and dissolution of the ${\pi}$ bands for quasi-free-standing graphene.

  • PDF

Separation of Goid, Palladium and Platinum in Chromite by Anion Exchange Chromatography for Inductively Coupled Plasma Atomic Emission Spectrometric Analysis

  • Choe, Gwang Sun;Lee, Chang Hyeon;Park, Yeong Jae;Jo, Gi Su;Kim, Won Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.801-806
    • /
    • 2001
  • A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behaviour of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(Ⅵ) to Cr(III) by H2O2. AuCl4- retained on the resin column was selectively eluted with acetone- HNO3-H2O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO3. The recovery yield of gold with acetone-HNO3-H2O was 100.7 ${\pm}2.0%$, and the yields of palladium and platinum with concentrated HCl and HNO3 were 96.1 ${\pm}1.8%$ and 96.6 ${\pm}1.3%$, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ${\pm}$ 2.2 ${\mu}g$/g and 1.6 $\pm$ 0.14 ${\mu}g$/g, respectively. Palladium was not detected.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential (풍화광미내 고상 비소의 광물학적${\cdot}$화학적 특성 및 용출 가능성 평가)

  • 안주성;김주용;전철민;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.27-38
    • /
    • 2003
  • Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.