• Title/Summary/Keyword: Au dissolution

Search Result 28, Processing Time 0.024 seconds

Structure Dependent Electrocatalysis for Electroreduction of Oxygen at Nanoporous Gold Surfaces (나노다공성 금 표면상에서 구조 변화에 따른 전기화학적 산소환원 촉매활성)

  • Choi, Su-Hee;Choi, Kyoung-Min;Kim, Jong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • We investigate the electrocatalytic activities for oxygen reduction at nanoporous gold (NPG) surfaces fabricated by selective dissolution of Ag from electrodeposited Ag-Au layers on electrode surfaces. The structure of NPG was controlled by changing the concentration ratios of precursor metal complexes during the electrodeposition of Ag-Au layers and the corresponding surface morphology and surface area was examined. NPG structures with Ag/Au ratio of 2.0 exhibited the highest electrocatalytic activity for oxygen reduction, where the nanoporous structure plays a key role, but the surface area does not affect on the electrocatalytic activity. The mechanism of electroreduction of oxygen was investigated by rotating disk electrode techniques. In acidic media, oxygen was first reduced to hydrogen peroxide followed by further reduction to water through 2-step 4-electron mechanism, whereas the oxygen was reduced directly to water by 4-electron mechanism in basic media.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Study on Recovery of Precious Metal (Ag, Au) from Anode Slime Produced by Electro-refining Process of Anode Copper (양극동의 전해정련시 발생된 양극슬라임으로부터 귀금속(Ag, Au) 회수에 대한 연구)

  • Kim, Young-Am;Park, Bo-Gun;Park, Jae-Hun;Hwang, Su-Hyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.23-29
    • /
    • 2018
  • Recently rapid economic growth and technological development have led to an increase in the generation of waste electrical and electronic equipment (WEEE). As the amount of electric and electronic waste generated increases, the importance of processing waste printed circuit boards (PCB) is also increasing. Various studies have been conducted to recycle various valuable metals contained in a waste PCB in an environmentally friendly and economical manner. To get anode slime containing Ag and Au, Anode copper prepared from PCB scraps was used by means of electro-refining. Ag and Au recovery was conducted by leaching, direct reduction, and ion exchange method. In the case of silver, the anode slime was leached at 3 M $HNO_3$, 100 g/L, $70^{\circ}C$, and Ag was recovered by precipitation, alkali dissolution, and reduction method. In the case of gold, the nitrate leaching residues of the anode slime was leached at 25% aqua regia, 200 g/L, $70^{\circ}C$, and Au was recovered by pH adjustment, ion exchange resin adsorption, desorption and reduction method. The purity of the obtained Au and Ag were confirmed to be 99.99%.

The Dissolution Efficiency of Gold Concentrate with Microwave-nitric Acid Leaching and the Recovery of Invisible Gold Using the Filter Paper (마이크로웨이브-질산용출에 의한 금 정광의 용해효율과 여과지를 이용한 비-가시성 금 회수)

  • Lee, Jong-Ju;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.595-604
    • /
    • 2019
  • The purpose of this study was simply to obtain gold through a microwave-nitric acid experiment of invisible gold concentrate with the use of filter paper. For the purpose, this study conducted a microwave-nitric acid leaching experiment and examined nitric acid concentration. As a result of the experiment, this study discovered that Fe, Te and Ag were completely leached in the leaching solution whereas Au was not determined in all of the nitric acid conditions. The leaching solution was filtered with three filter papers and then these filter papers were analyzed with SEM/EDS. As a result of the EDS analysis, Au was detected in all of the surface and cross-section of the 1st, 2nd and 3rd filter papers. As the three filter papers containing solid-residue were analysed in the lead-fire assay, gold particles were found in all of the nitric acid conditions. In the lead-fire assay, maximum gold(452.50g/t) was recovered when nitric acid concentration was 6M and microwave leaching time was 12mins.

A Study on the Au Recoverability from Mongolian Tailings (몽골 광미로부터 Au 회수 가능성에 관한 연구)

  • Ko, Chin-Surk;Burentogtokh, Togtokhmaa;Lee, Jong-Ju;Park, Cheon-Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • The purpose of this study was to investigate the possibility of eco-friendly/efficient recovery of valuable resources, such as Au from mine tailings, which are environmental pollutants in the Mongolian mine sector. For this purpose, this study selected 4 place of mine tailings of the Mongolian mines sector and carried out mineralogy evaluation of the valuable resources in the tailings. In this study, flotation was performed to separate and concentrate valuable resources in the tailings. Microwave nitric acid leaching was used to leach the valuable resources contained in the sample and to improve the Au grade. Chloride leaching attempted to leach Au from the leaching residues. XRD analysis of the tailings samples showed that most of the samples consisted of silicate minerals. As a result of confirming the content of the element through XRF analysis, the SiO2 content was very high, the Fe2O3 content was 2.32-4.23%, and the content of PbO, CuO and ZnO components were all within 2%. As a result of flotation for the tailings samples, the recovery of Au was the highest in Bayanairag sample (95.38%). As a result of microwave nitric solution experiment on Au concentrate sample obtained by flotation, the content of Au in the microwave nitrate leaching residue increased by 12.15% from 192.72 g/ton to 216.14g/ton in Khamo sample, the highest increase was 57.58% in Bayanairag sample. TCLP tests on tailings generated after flotation showed dissolution characteristics within EPA. Chloride leaching test was performed to recover Au from solid residues. The leaching rate was 87.43-89.35% within 10 minutes. For Khamo sample, 100% Au was leached after 60 minutes of leaching time. Therefore, in order to process the tailings continuously generated in Mongolia, applying the same process as the present study is expected to effectively recover the valuable resources contained in the tailings.

Synthesis and Formation Mechanism of ZnO Nanotubes via an Electrochemical Method (전기화학적 방법에 의한 산화아연 나노튜브의 합성과 형성 기구)

  • Moon, Jin Young;Kim, Hyunghoon;Lee, Ho Seong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.400-405
    • /
    • 2011
  • ZnO nanotube arrays were synthesized by a two-step process: electrodeposition and selective dissolution. In the first step, ZnO nanorod arrays were grown on an Au/Si substrate by using a homemade electrodeposition system. ZnO nanorod arrays were then selectively dissolved in an etching solution composed of 0.125 M NaOH, resulting in hollow ZnO nanotube arrays. It is suggested that the formation mechanism of the ZnO nanotube arrays might be attributed to the preferred surface adsorption of hydroxide ion ($OH^{-1}$) on a positive polar surface followed by selective dissolution of the metastable Zn-terminated ZnO (0001) polar surface caused by the difference in the surface energy per unit area between the ZnO nanorod and nanotube.

Application of Roasting Pretreatment for Gold Dissolution from the Invisible Gold Concentrate and Mineralogical Interpretation of their Digested Products (비가시성 금정광의 효율적 용해를 위한 소성전처리 적용과 분해 잔유물에 대한 광물학적 해석)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;On, Hyun-Sung;Kim, Byung-Joo;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • In order to dissolve Au, Ag, and other valuable metals from gold ore concentrate, raw gold concentrate was pre-treated by roasting and salt-roasting at $750^{\circ}C$. The roasted concentrate was treated with aqua regia digestion to dissolve the valuable metals and higher amount of Au, Ag, and valuable metals were extracted from the roasted concentrates than from the raw concentrate. Higher amount of these metals were also extracted from the salt-roasted concentrate than from the roasted concentrate. The results of the gold dissolution experiments showed that the gold dissolution was most efficient when particle size, roasting temperature, and the percentage of added salt in salt roasting were about $181{\sim}127{\mu}m$, $750^{\circ}C$, and was 20.0%, respectively. The XRD analysis suggests that quartz and pyrite were not destroyed even through roasting at $750^{\circ}C$ and decomposition with aqua regia. However, through salt roasting, pyrite was completely decomposed, whereas quartz could not be destroyed through salt-roasting at $750^{\circ}C$ and aqua regia digestion. Accordingly, it was expected that the gold contained in quartz can not be dissolved through salt-roasting and treatment with aqua regia.

Etchant for Dissolving Thin Layer of Ag-Cu-Au Alloy

  • Utaka, Kojun;Komatsu, Toshio;Nagano, Hiroo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.304-307
    • /
    • 2007
  • As to the reflection electrode of LCD (liquid crystal displays), silver-copper-gold alloy (hereafter, it is called as ACA (Ag98%, Cu1%, Au1%)) is an effective material of which weathering resistance can be improved more compared with pure silver. However, there is a problem that gold remains on the substrate as residues when ACA is etched in cerium ammonium nitrate solution or phosphoric acid. Gold can not be etched in these etchants as readily as the other two alloying elements. Gold residue has actually been removed physically by brushing etc. This procedure causes damage to the display elements. Another etchant of iodine/potassium iodide generally known as one of the gold etchants can not give precise etch pattern because of remarkable difference in etching rates among silver, copper and gold. The purpose of this research is to obtain a practical etchant for ACA alloy. The results are as follows. The cyanogen complex salt of gold generates when cyanide is used as the etchant, in which gold dissolves considerably. Oxygen reduction is important as the cathodic reaction in the dissolution of gold. A new etchant of sodium cyanide / potassium ferricyanide whose cathodic reduction is stronger than oxygen, can give precise etch patterns in ACA alloy swiftly at room temperature.

Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes

  • Dilasari, Bonita;Kwon, Kyung-Jung;Lee, Churl-Kyoung;Kim, Han-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.135-148
    • /
    • 2012
  • Ionic liquids are steadily attracting interests throughout a recent decade and their application is expanding into various fields including electrochemistry due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, wide electrochemical potential window and so on. These features make ionic liquids become an alternative solution for electrodeposition of metals that cannot be electroplated in aqueous electrolytes. In this review, we classify investigated metals into three categories, which are light (Li, Mg), refractory (Ti, Ta) and noble (Pd, Pt, Au) metals, rather than covering the exhaustive list of metals and try to update the recent development in this area. In electrodeposition of light metals, granular fine Li particles were successfully obtained while the passivation of electrodeposited Mg layers is an obstacle to reversible deposition-dissolution process of Mg. In the case of refractory metals, the quality of Ta and Ti deposit particles was effectively improved with addition of LiF and pyrrole, respectively. In noble metal category, EMIM TFSA ionic liquid as an electrolyte for Au electrodeposition was proven to be effective and BMP TFSA ionic liquid developed a smooth Pd deposit. Pt nanoparticle production from ionic liquid droplet in aqueous solution can be cost-effective and display an excellent electrocatalytic activity.

The Effective Recovery of Gold from the Invisible Gold Concentrate Using Microwave-nitric Acid Leaching Method (마이크로웨이브-질산침출방법에 의한 비가시성 금의 회수율 향상)

  • Lee, Jong-Ju;Myung, Eun-Ji;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.185-200
    • /
    • 2019
  • This study aimed to liberate gold from invisible gold concentrate (Au = 1,840.00 g/t) through microwave nitric acid leaching experiments. For the purpose, this study conducted microwave-nitric acid leaching experiments and examined nitric acid concentration effect, microwave leaching time effect and sample addition effect. The results of the experiments were as follows: Au (gold) contents were not detected in all of the microwave leaching conditions. In the insoluble-residue, weight loss rate tended to decrease as the nitric acid concentration, microwave leaching time and sample addition increased. In an XRD analysis with solid-residue, it was suggested that gypsum and anglesite were formed due to dissolution of calcite and galena by nitric acid solution. When a fire assay was carried out with insoluble-residue, it was discovered that gold contents of the solid-residue were 1.3 (Au = 2,464.70 g/t) and 28.8 (52,952.80 g/t) times more than those of concentrate. But in the gold contents recovered, a severe gold nugget effect appeared. It is expected that the gold nugget effect will decrease if a sampling method of concentrate is improved in the microwave-nitric acid leaching experiments and filtering paper with smaller pore size is used for leaching solution and burned filter paper is used for sampling in lead-fire assay.