• Title/Summary/Keyword: Attitude tracking

Search Result 126, Processing Time 0.033 seconds

Tiltrotor Aircraft SCAS Design Using Neural Networks (신경회로망을 이용한 틸트로터 항공기 SCAS 설계)

  • Han, Kwang-Ho;Kim, Boo-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • This paper presents the design and evaluation of a tiltrotor attitude controller. The implemented response type of the command augumentation system is Attitude Command Attitude Hold. The controller architecture can alleviate the need for extensive gain scheduling and thus has the potential to reduce development time. The control algorithm is constructed using the feedback linearization technique. And an on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge tiltrotor aircraft dynamics is applied to augment the attitude control system. The use of Lyapunov stability analysis guarantees boundedness of the tracking error and network parameters. The performance of the controller is evaluated against ADS-33E criteria, using the nonlinear tiltrotor simulation code for Bell TR301 developed by KARI. (Korea Aerospace Research Institute)

Realization of An Outdoor Augmented Reality System using GPS Tracking Method (GPS 트래킹 방식을 이용한 옥외용 증강현실 시스템 구현)

  • Choi, Tae-Jong;Kim, Jung-Kuk;Huh, Woong;Jang, Byun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.5
    • /
    • pp.45-55
    • /
    • 2002
  • In this paper, we describe an outdoor augmented reality system using GPS tracking for position and attitude information. The system consist of a remote mobile operation unit and a ground operation unit. The remote mobile operation unit includes a real-time image acquiring device, a GPS tracking device, and a wireless data transceiver; the ground operation unit includes a wireless transceiver, a virtual image generating device, and an image superimposing device. The GPS tracking device for measurement of position and attitude of the remote mobile operation unit was designed by TANS Vector and RT-20 for DGPS. The wireless data transceiver was for data transmission between the remote mobile operation unit and the ground operation unit. After the remote mobile operation unit was installed on a vehicle and a helicopter, the system was evaluated to verify its validity in actual applications. It was found that the implemented system could be used for obtaining real-time remote information such as construction simulation, tour guide, broadcasting, disaster observation, or military purpose.

Influence of Endorser's Gaze Direction on Consumer's Visual Attention, Attitude and Recognition: Focused on the Eye Movement (광고 모델의 위치와 시선 방향이소비자의 시각적 주의, 태도 및재인에 미치는 효과: 안구운동추적기법을 중심으로)

  • Chung, Hyenyeong;Lee, Ji-Yeon;Nam, Yun-Ju
    • (The) Korean Journal of Advertising
    • /
    • v.29 no.7
    • /
    • pp.29-53
    • /
    • 2018
  • In our study, we investigated the effects of position of endorser and endorser's gaze direction(direct/averted_image/averted_text) on advertising attitude, purchase intent and brand recognition using eye-tracking method. Focusing on the printed cosmetic ads which the role of endorser is important and indirect persuade route is relatively is emphasized, we conducted experiment on 36 participants in 20s. As prior studies, our results shows that participants paid attention to more and faster on specific element which the endorser is gazing at. But it was not reflected to ad attitude and purchase intent directly. When the endorser is positioned in left the side, the highest purchase intent was shown in direct gaze condition, while when the endorser is on the right side, the highest ad attitude was shown in gazing image condition. Additionally, the brand recognition task following eye-tracking experiment shows that recognition accuracy was higher only in condition which the endorser is in the left side looking at the product image. These results demonstrated that the gaze direction of endorser plays a role as attentional guidance, which means it can lead customer's attention to particular region in the printed ad, but the effect can be varied depending on the position of endorser and which type of information the endorser is gazing at. Therefore, ultimately, to increase customer's ad attitude and purchase intent, complex consideration of not only the gazing direction of the endorser, but the position of endorser and other diverse elements is necessary.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.

Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi (RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어)

  • Kim, Young-Shik;Lee, Ji-Hong;Kim, Jin-Ha;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

The Study of an Automatic Tracking and Pointing Method and the Regarding System for Facing Two Antennas (상호 대국의 안테나 간 자동 추적 지향 기법 및 장치 연구)

  • Gimm, Hak In;Cho, Sung Hoon;Lee, Chong Hyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.498-509
    • /
    • 2015
  • The existing mobile antenna networks in the military use have been operated by the manual pointing between two antennas. The work presented here describes the study of ATPC(Automatic Tracking and Pointing Control) system between facing antennas and the related tracking and pointing performances. This system is able to automatically track the maximum RSSI(Received Signal Strength Indication) value from the source's RF(Radio Frequency) signal and then control for maintaining the LOS(Line of Sight) between two antennas. The system has three major units; the driving unit consisting of motors, harmonic drives and encoders, the sensor unit with a GPS(Global Positioning System) and AHRS(Attitude and Heading Reference System) and the control unit regulating all the tracking and pointing events. By using PI(Proportional and Integral) controller, this system is able to properly track and point the other antenna under the external disturbance like the wind load. Both the simulation and the experimental works have been successively carried out to prove the performances of the system.

Analysis of Solar Tracking System Via Single Term Walsh Series Approach (월쉬 단일항 전개에 의한 태양추적장치의 해석)

  • Yoo, Sang-Jin;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.682-686
    • /
    • 1991
  • The purpose of a solar tracking system (STS) is to control the attitude of a space vehicle so that it will track the sun with high accuracy. In this paper, the literature of tracking of the sun in a plane is surveyed and a control modeling for the analysis of STS is presented by simultaneous transfer functions and state-space equations. Also a program for obtaining state variables by the single term Walsh series(STWS) approach is developed. The proposed approach is much simpler in analysis and easier in implementation than the Runge-Kutta numerical integration Method. The results of computer simulation are shown for the dynamic behaviors of vehicle axis, armature-controlled dc motor and controller of STS via a Runge-Kutta method and a single term Walsh series approach, respectively.

  • PDF

Dynamic Surface Control Based Tracking Control for a Drone Equipped with a Manipulator (동적 표면 제어 기반의 매니퓰레이터 장착 드론의 추종 제어)

  • Lee, Keun-Uk;Choi, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1123-1130
    • /
    • 2017
  • This paper deals with the dynamic surface control based tracking control for a drone equipped with a 2-DOF manipulator. First, the dynamics of drone and 2-DOF manipulator are derived separately. And we obtain the combined model of a drone equipped with a manipulator considering the inertia and the reactive torque generated by a manipulator. Second, a dynamic surface control based attitude and altitude control method is presented. Also, multiple sliding mode control based position control method is presented. The system stability and convergence of tracking errors are proven using Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.