• Title/Summary/Keyword: Attitude Dynamics

Search Result 173, Processing Time 0.03 seconds

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Test Setup for Flight Sensor Dynamics and Compensation of Time-delayed Position Output (비행 센서의 동특성 측정과 위치 출력의 시간 지연 보상)

  • Park, Sang-Hyuk;Lee, Sang-Hyup
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.16-20
    • /
    • 2010
  • The dynamic characteristics of flight sensors is obtained by a simple method that deploys a pendulum with a rotary encoder. The encoder output is used with kinematic relations to derive reference signals for various flight sensors, including position, velocity, attitude, and angular rate sensors as well as accelerometer and magnetic sensors. A time delay of 0.4 seconds is found in the position output of the flight sensor under investigation. A logic to compensate for the time delay using a velocity information is proposed and validated in flight tests.

Attitude Control of Model Helicopter using the LQR Controller (최적 LQR 제어기를 이용한 모형 헬리콥터의 자세 제어)

  • Han, Hak-Sic;Jeong, Sang-Chul;Kim, Gwan-Hyung;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2171-2175
    • /
    • 2002
  • Helicopter dynamics are plenty of nonlinearity. A complete mathematical model including propeller dynamics and fortes generated by the propellers is very difficult to obtain. So the method used to design to design a controller is a parameter estimation. Design controller based on variable structure system. This paper deals with LQR control technique to control efficiently, its elevation angle and azimuth one. The purpose of the experiment is to design a controller allows to use a desired elevation angle and azimuth ones. The system model has a helicopter model with 2-degree-of freedom. The simulation results were verified usefulness of controller.

  • PDF

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

3D Spatial Interaction Method using Visual Dynamics and Meaning Production of Character

  • Lim, Sooyeon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.130-139
    • /
    • 2018
  • This study is to analyze the relationship between character and human semantic production through research on character visualization artworks and to develop a creative platform that visually expresses the formative and semantic dynamics of characters using the results will be. The 3D spatial interaction system using the character visualization proposed generates the transformation of the character in real time using the interaction with user and the deconstruction of the character structure. Transformations of characters including the intentions of the viewers provide a dynamic visual representation to the viewer and maximize the efficiency of meaning transfer by producing various related meanings. The method of dynamic deconstruction and reconstruction of the characters provided by this system creates special shapes that viewers cannot imagine until now and further extends the interpretation range of the meaning of the characters. Therefore, the proposed system not only induces an active viewing attitude from viewers, but also gives them an opportunity to enjoy watching the artwork and demonstrate creativity as a creator. This system induces new gestures of the viewer in real time through the transformation of characters in accordance with the viewer''s gesture, and has the feature of exchanging emotions with viewers.

Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase (초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구)

  • Kim, Seon Hong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.

A System Dynamics Simulation on KIKO Derivatives and its Implications from International Trade (국제통상에서 KIKO 파생금융상품과 그 영향에 대한 시스템 다이내믹스 시뮬레이션)

  • Eom, Jae-Gun;Chung, Chang-Kwon
    • Korean System Dynamics Review
    • /
    • v.15 no.4
    • /
    • pp.5-28
    • /
    • 2014
  • Derivatives can be easily bought by those companies that need to hedge foreign currency debt or foreign currency assets through the financial market, considering their exchange rate exposure from international trade. The derivatives market has been growing rapidly due to the needs for investment and hedging. To manage foreign exchange risk, companies hedge risks through financial derivatives. According to our study, hedging is an effective way to mitigate the impact of exposure to exchange risk, as long as companies are only hedging underlying assets. Yet, covetous attitude toward the profit from derivatives and unexpected changes in exchange rate can cause problems for companies. This study analyzed the structural risks of derivatives with analysis of system dynamics. In particular, many companies suffered substantial loss due to KIKO during the economic crisis. We explained the problem therein through dynamic analysis. In addition, we revealed the structural problem that could cause a sudden spike in losses through simulations.

  • PDF

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

A Study on the Causal Relationship Between Attributes of VR Ad and Advertising Effectiveness: Mediating Effect of the Consumer's Innovation (VR 광고 특성과 광고효과 간의 인과관계에 관한 연구 : 소비자 혁신성의 매개효과)

  • Choi, Yun-Seul;Yu, Seung-Yeob
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.37-45
    • /
    • 2019
  • This study investigated whether the model attributes of VR Ads (3D effect, presence, Dynamics, Amusement) affect the attitude of the advertising. We also examined the mediating role of consumer's innovation in the model attributes and advertising attitude of VR advertisements. To do this, VR equipment was used to induce real advertisers to experience advertisements. The causal relationship between variables was examined through covariance structure analysis. The results are as follows. First, all independent variables of the VR advertising model have a positive effect on the consumer's innovation. Second, the 3D effect, Amusement of the VR advertising model have a positive effect on the attitude of the advertising. Third, the effects of the VR advertising model on all variables are mediated by the consumer's innovation of the VR advertisement. The results of this study provide implications for understanding the characteristics of VR Ads.