• Title/Summary/Keyword: Attenuation map

Search Result 51, Processing Time 0.033 seconds

A Study on Suitability of Road Traffic Noise Map for Environmental Noise Impact Assessment (환경소음 영향평가 시 도로교통 소음지도의 적용성 검토 연구)

  • Kim, Ji-Yoon;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.311-316
    • /
    • 2008
  • It is needed to assess the impact of the road traffic noise for city planning. In Korea, the current noise impact assessment h3s not yet considered the impacts of the multiple reflection, the deflection and the ground attenuation caused by buildings and other obstacles. A noise map is useful tool to solve this problems. But before everything else, suitability of noise map must be assessed for variety of geometry conditions. In this study, we assessed suitability of road traffic noise map by compared measured noise levels with predicted noise levels from each road traffic noise map for Site A, B and C.

  • PDF

Quantitative Comparisons in $^{18}F$-FDG PET Images: PET/MR VS PET/CT ($^{18}F$-FDG PET 영상의 정량적 비교: PET/MR VS PET/CT)

  • Lee, Moo Seok;Im, Young Hyun;Kim, Jae Hwan;Choe, Gyu O
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.68-80
    • /
    • 2012
  • Purpose : More recently, combined PET/MR scanners have been developed in which the MR data can be used for both anatometabolic image formation and attenuation correction of the PET data. For quantitative PET information, correction of tissue photon attenuation is mandatory. The attenuation map is obtained from the CT scan in the PET/CT. In the case of PET/MR, the attenuation map can be calculated from the MR image. The purpose of this study was to assess the quantitative differences between MR-based and CT-based attenuation corrected PET images. Materials and Methods : Using the uniform cylinder phantom of distilled water which has 199.8 MBq of $^{18}F$-FDG put into the phantom, we studied the effect of MR-based and CT-based attenuation corrected PET images, of the PET-CT using time of flight (TOF) and non-TOF iterative reconstruction. The images were acquired from 60 minutes at 15-minute intervals. Region of interests were drawn over 70% from the center of the image, and the Scanners' analysis software tools calculated both maximum and mean SUV. These data were analyzed by one way-anova test and Bland-Altman analysis. MR images are segmented into three classes(not including bone), and each class is assigned to each region based on the expected average attenuation of each region. For clinical diagnostic purpose, PET/MR and PET/CT images were acquired in 23 patients (Ingenuity TF PET/MR, Gemini TF64). PET/CT scans were performed approximately 33.8 minutes after the beginnig of the PET/MR scans. Region of interests were drawn over 9 regions of interest(lung, liver, spleen, bone), and the Scanners' analysis software tools calculated both maximum and mean SUV. The SUVs from 9 regions of interest in MR-based PET images and in CT-based PET images were compared. These data were analyzed by paired t test and Bland-Altman analysis. Results : In phantom study, MR-based attenuation corrected PET images generally showed slightly lower -0.36~-0.15 SUVs than CT-based attenuation corrected PET images (p<0.05). In clinical study, MR-based attenuation corrected PET images generally showed slightly lower SUVs than CT-based attenuation corrected PET images (excepting left middle lung and transverse Lumbar) (p<0.05). And percent differences were -8.01.79% lower for the PET/MR images than for the PET/CT images. (excepting lung) Based on the Bland-Altman method, the agreement between the two methods was considered good. Conclusion : PET/MR confirms generally lower SUVs than PET/CT. But, there were no difference in the clinical interpretations made by the quantitative comparisons with both type of attenuation map.

  • PDF

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.

An Analysis of the Sensitivity of Input Parameters for the Seismic Hazard Analysis in the Korean Peninsula (한반도 지진위험도 산출을 위한 입력 파라메타의 민감도 분석)

  • Kim, Min-Ju;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • This study is to analyze the sensitivity for the parameters (a and b values, $M_{max}$, attenuation formula, and seismo-tectonic model) which are essential for the seismic hazard map. The values of each parameter were suggested by 10 members of the expert group. The results show that PGA increases as a value and $M_{max}$ become larger and as b value smaller. Big impact on the seismic hazard is observed for attenuation formula, a and b values although there is little impact on $M_{max}$ and seismo-tectonic model. These parameters with big impact require careful consideration for obtaining adequate values that well reflects the seismic characteristics of the Korean peninsula.

Influence on PET Exam Caused by Density Differences of Barium-sulfate Contrast Media (Barium 조영제의 농도 차이가 PET 검사에 미치는 영향)

  • Choi, Woo-Joon;Shin, Sang-Ki;Nam, Ki-Pyo;Park, Soon-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Purpose: The evaluation of SUV (Standardized Uptake Values) for quantitative analysis in PET exam is the most significant. In PET exam, we make attenuation correction images by using $^{68}Ge$, $^{137}Cs$ or CT data. At this time, a distorted attenuation map affects quantitative analysis. After the exam using barium-sulfate and high density of barium contrast make attenuation map distorted. And then it brings bed influences on SUV. The aim of this study is to verify the relationship between high density barium-sulfate and SUV in PET exam. Materials and Methods By using $^{18}F$-FDG, we made barium-sulfate powder, density of 0, 1.5, 3, 5, 10 and 15% respectively and acquired PET and PET/CT images per each density. And we examined SUV variations from PET and PET/CT images according to differences of barium's density. Moreover, we finally calculated SUV causing variations in HU (Hounsfield Units) values to justify whether the differences of barium density bring any changes in PET/CT exam. Results: From PET images acquired from transmission scan with $^{68}Ge$, we got SUV figures from 6.46 to 6.8 in barium density between 0 to 15 percent. On the other hand, In PET images acquired from Tx scan that using CT, SUV was 6.77 to 23.73, derived from the same barium density. And CT HU values range from 29 to 2004. Conclusion: PET images from Tx data using $^{68}Ge$ weren't affected by barium density and had no differences in SUV. But in the PET/CT images using CT Tx data, there's considerable variations in HU and SUV values according to a difference of barium density in HU values. To perform a precise examination, barium sulfate should be removed from a human body before performing a PET exam.

  • PDF

Assessment of Attenuation Correction Algorithms With a $^{137}$Cs Point Source (Cs-137 점선원을 이용한 감쇠보정기법들에 대한 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Park, Hae-Jung;Kwon, Yun-Youn;Son, Hye-Kyoung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.96-99
    • /
    • 2004
  • The objective of this study is to assess attenuation correction algorithms utilized in a multipurpose whole-body GSO PET scanner. Four different types of phantoms were tested using different types of attenuation correction techniques. FOV (Field of View) of 256mm was used for brain PET imaging. For compensating attenuation, transmission data of a $^{137}$Cs point source were acquired after the F-18 emission source was infused to the phantoms. Scatter correction were peformed. Reconstructed images of the phantoms were assessed. In addition, reconstructed images of a normal subject were compared and assessed by nuclear medicine physicians. As a result, decreased intensity at the central portion of the attenuation map with cylindrical phantom was noticed during use of the measured attenuation correction. On the other hand, segmentation or remapping attenuation correction provided uniform phantom image. the images reconstructed from the clinical brain data explained the attenuation of a skull, at though reconstructed images of the phantoms couldn't explain it. in conclusion, the complicated and improved attenuation correction methods were required to obtain the better accuracy of the quantitative brain PET images. Our study will be useful in improving quantitative brain PET imaging modalities with attenuation correction of $^{137}$Cs transmission source.

  • PDF

An Analysis on the Propagation Prediction Model of Earth-space Communication Link using Local Data (로컬 데이터를 이용한 지구-우주 통신 링크의 전파 예측 모델 분석)

  • Lee, Hwa-Choon;Kim, Woo-Su;Choi, Tae-Il;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.483-488
    • /
    • 2019
  • The propagation prediction model of the earth-space communication link used as an international standard was used to calculate and analyze the total losses on the communication path. The standard definition and scope of ITU-R Rec. were analyzed for each parameter(rain, scintillation, atmospheric gas, clouds) used to calculate the total loss. The total losses were calculated using the standard model for each parameter and the statistical data provided by ITU-R, and the results were analyzed using the validation examples data. The rain losses were calculated using long-term local rainfall attenuation statistics data measured in the region, and compared with the calculation results using a rainfall map in the ITU-R Recommendation. The data of Cheollian satellites for the L-Band and Ka-Band were used to calculate the rainfall attenuation. In the range of 0.01% to 0.1%, it was found to have a greater attenuation slope when using local data than attenuation by the model of ITU-R.

The Evaluation for Attenuation Map using Low Dose in PET/CT System (PET/CT 시스템에서 감쇠지도를 만들기 위한 저선량 CT 평가)

  • Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Lee, Chang-Lae;Lim, Han-Sang;Park, Hoon-Hee;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • The current PET/CT system with high quality CT images not only increases diagnostic value by providing anatomic localization, but also shortens the acquisition time for attenuation correction than primary PET system. All commercially available PET/CT system uses the CT scan for attenuation correction instead of the transmission scan using radioactive source such as $^{137}Cs,\;^{68}Ge$. However the CT scan may substantially increase the patient dose. The purpose of this study was to evaluate quality of PET images reconstructed by CT attenuation map using various tube currents. in this study, images were acquired for 3D Hoffman brain phantom and cylindrical phantom using GE DSTe PET/CT system. The emission data were acquired for 10 min using phantoms after injecting 44.03 MBq of $^{18}F-FDG$. The CT images for attenuation map were acquired by changing tube current from 10 mA to 95 mA with fixed exposure time of 8 sec and fixed tube voltage of 140 kVp. The PET images were reconstructed using these CT attenuation maps. Image quality of CT images was evaluated by measuring SD (standard deviation) of cylindrical phantom which was filled with water and $^{18}F-FDG$ solution. The PET images were evaluated by measuring the activity ratio between gray matter and white matter in Hoffman phantom images. SDs of CT images decrease by increasing tube current. When PET images were reconstructed using CT attenuation maps with various tube currents, the activity ratios between gray matter and white matter of PET images were almost same. These results indicated that the quality of the PET images using low dose CT data were comparable to the PET images using general dose CT data. Therefore, the use of low dose CT is recommended than the use of general dose CT, when the diagnostic high quality CT is not required. Further studies may need to be performed for other system, since this study is limited to the GE DSTe system used in this study.

  • PDF

A Study on the Computation and Application of Sound Power Level for Road Traffic Noise of Renewal Area (개발 예정지역 도로교통소음 음향파워레벨 산정과 응용에 관한 연구)

  • Kim, Deuk-Sung;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.635-644
    • /
    • 2005
  • This paper is. a study on relation between road traffic noise(RTN) and sound power level(PWL). At present, many experimental formulae and prediction formulae are used for prediction of RTN. But these formulae are difficult to appiy to the metropolitan area because these formulae are inaccurate in the different condition from reference condition. This paper calculate RTN and PWL of each prediction formula, choose the best one and make a noise map of the subject area. Procedure is as follows. First, calculate $L_{eq}$ of RTN using experimental formulae and prediction formulae. Second, calculate PWL using $L_{eq}$ of RTN and distance attenuation for point source at semi-free field. Third, choose the most accurate formula. And finally, make a noise map of the subject area at present and future. The result using noise map will be able to apply to application field. Noise mapping tool used on this paper is Raynoise program using Ray Tracing Method(RTM), Mirror Image Source Method(MISM) and Hybrid Method(HM).