• Title/Summary/Keyword: Attack Modeling

Search Result 152, Processing Time 0.028 seconds

Network Security Modeling and Cyber Attack Simulation Using the SES/MB Framework (SES/MB 프레임워크를 이용한 네트워크 보안 모델링 및 사이버 공격 시뮬레이션)

  • 정기찬;이장세;김환국;정정례;박종서;지승도
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.118-124
    • /
    • 2000
  • 본 논문은 계층 구조적이고 모듈화 된 모델링 및 시뮬레이션 프레임워크를 이용한 네트워크 보안 모델링과 사이버 공격에 대한 시뮬레이션 기법의 연구를 주목적으로 한다. 단순한 네트워크 모델에서의 원인-결과 모델을 대상으로 시뮬레이션 하는 기존의 접근방법과는 달리, 복잡한 네트워크 보안 모델과 모델 기반의 사이버 공격에 대한 시뮬레이션 기법은 아직까지 시도된 바가 없는 실정이다. 따라서, 본 논문에서는 첫째, System Entity Structure/Model Base(SES/MB)을 통하여 계층 구조적, 모듈화, 객체지향적 설계를 하였고 둘째, 해킹 행위의 상세분석을 위해 취약성을 고려한 명령어 수준의 네트워크 보안 모델링 및 시뮬레이션 방법론을 제안하였다. 마지막으로, 사이버 공격 시나리오를 이용한 사례연구를 통하여 타당성을 검증하였다.

  • PDF

Analysis on the Dynamic Characteristics of an Optical Storage Drive (광 정보저장 드라이브의 동적 특성 해석)

  • Nam, Yoon-Su;Lim, Jong-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.149-158
    • /
    • 1999
  • The modern trends of optical storage devices can be characterized by high density in information recording, and high bandwidth in data input/output processing rate. These make servo engineers to face with a new barrier on control system design in much more difficult way. The first step to attack this barrier will be through a systematic modeling for the dynamic characteristics of optical storage drive. in this paper, an analytical dynamic model for an optical storage drive based on FEM is drived, and compared with experimental results. Through this comparison, a practical dynamic model on the focusing and tracking motion of optical storage drive is proposed for the initiation of real control system design problem.

  • PDF

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

Modeling and Implementation of Firewall and IPS for Security Simulation on Large-scale Network Using SSFNet (SSFNet을 이용한 대규모 네트워크상에서의 보안 시뮬레이션을 위한 방화벽과 IPS모듈의 모델링 및 구현)

  • Kim, Yong-Tak;Kwon, Oh-Jun;Kim, Tai-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.1037-1044
    • /
    • 2006
  • It's difficult to check cyber attacks and the performance of a security system in a real large-scale network. Generally, a new security system or the effect of a new security attack are checked by simulation. We use SSFNet to simulate our security system and cyber attack. SSFNet is an event-driven simulation tools based on process, which has a strength to be capable of expressing a large-scale network. But it doesn't offer any API's which can manipulate not only the related function of security but also the packet. In this paper, we developed a firewall and IPS class, used for a security system, and added to them components of SSFNet. The firewall is modelled a security system based on packet filtering. We checked the function of the firewall and the IPS with network modelled as using our SSFNet. The firewall blocks packets through rules of an address and port of packets. The result of this simulation shows that we can check a status of packets through a log screen of IPS installed in a router and confirm abnormal packet to be dropped.

  • PDF

An Asset-Mission Dependency Model Adaptation and Optimized Implementation for Efficient Cyber Mission Impact Assessment (효율적인 임무 피해 평가를 위한 자산-임무 의존성 모델 적용 및 최적화된 구현)

  • Jeon, Youngbae;Jeong, Hyunsook;Han, In sung;Yoon, Jiwon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.579-587
    • /
    • 2017
  • Cyber Mission Impact Assessment is one of the essential tasks which many militaries and industrial major companies should perform to effectively achieve their mission. The unexpected damage to an organization's assets results in damage to the whole system's performance of the organizations. In order to minimize the damage, it is necessary to quantify the available capacity of the mission, which can be achieved only with the remaining assets, and to immediately prepare a new second best plan in a moment. We therefore need to estimate the exact cyber attack's impact to the mission when the unwanted damage occurs by modeling the relationship between the assets and the missions. In this paper, we propose a new model which deals with the dependencies between assets and missions for obtaining the exact impact of a cyber attack. The proposed model distinguishes task management from asset management for an efficient process, and it is implemented to be optimized using a vectorized operation for parallel processing and using a buffer to reduce the computation time.

An invisible watermarking scheme using the SVD (특이치 분해를 이용한 비가시적 워터마크 기법)

  • 유주연;유지상;김동욱;김대경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1118-1122
    • /
    • 2003
  • In this paper, we propose a new invisible digital watermarking scheme based on wavelet transform using singular value decomposition. Embedding process is started by decomposing the lowest frequency band image with 3${\times}$3 block among which we define the watermark block chosen by a key set; entropy and condition number of the block. A watermark is embedded in the singular values of each watermark blocks. This provides a robust watermarking in lowest possible time-frequency domain. To detect the watermark, we are locally modeling an attack as 3${\times}$3 matrices on the watermark blocks. Combining with the SVD and the attack matrices, we estimate watermark set corresponding to the watermark blocks. In each watermark block, we determine an optimal watermark which is justified by the T-testing. A numerical experiment shows that the proposed watermarking scheme efficiently detects the watermarks from several JPEG attacks.

Remaining Service Life Prediction of Concrete Structures under Chloride-induced Loads (염해환경하의 콘크리트 구조물의 잔존수명 예측)

  • Song, Ha-Won;Luc, Dao Ngoc The
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1037-1040
    • /
    • 2008
  • In order to predict the remaining life of marine concrete structures under climatic loads, it is necessary to develop an analytical approach to predict the time and space dependent deterioration of concrete structures due to mainly chloride attack up to corrosion initiation and additional deterioration like cracking of cover concrete. This study aims to introduce FEM model for life-time simulation of concrete structures subjected to chloride attack. In order to consider uncertainties in materials as well as environmental parameters for the prediction, Monte Carlo Simulation is integrated in that FEM modeling for reliability-based remaining service life prediction. The paper is organized as follows: firstly general scheme for reliability-based remaining service life of concrete structures is introduced, then the FEM models for chloride penetration, corrosion product expansion and cover cracking are briefly explained, finally an example is demonstrated and the effects of localization of chloride concentration and corrosion product expansion on service life using above model are discussed.

  • PDF

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

STM-GOMS Model: A Security Model for Authentication Schemes in Mobile Smart Device Environments (STM-GOMS 모델: 모바일 스마트 기기 환경의 인증 기법을 위한 안전성 분석 모델)

  • Shin, Sooyeon;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1243-1252
    • /
    • 2012
  • Due to the widespread use of smart devices, threats of direct observation attacks such as shoulder surfing and recording attacks, by which user secrets can be stolen at user interfaces, are increasing greatly. Although formal security models are necessary to evaluate the possibility of and security against those attacks, such a model does not exist. In this paper, based on the previous work in which a HCI cognitive model was firstly utilized for analyzing security, we propose STM-GOMS model as an improvement of GOMS-based model with regard to memory limitations. We then apply STM-GOMS model for analyzing usability and security of a password entry scheme commonly used in smart devices and show the scheme is vulnerable to the shoulder-surfing attack. We finally conduct user experiments to show the results that support the validity of STM-GOMS modeling and analysis.

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.