• Title/Summary/Keyword: Attached Building

Search Result 242, Processing Time 0.028 seconds

The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window (덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석)

  • Bae, Min-Jung;Kang, Jae-Sik;Choi, Gyeong-Seok;Choi, Hyung-Joung
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

Calculation of the Attached-Piping-Material Rate for the Building Mechanical-Service System in Office Buildings (사무소 건축물의 건축기계설비 배관 부속자재 요율 산출)

  • Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.185-194
    • /
    • 2017
  • Currently, in comparison with other architectural estimations, the estimation work regarding building mechanical-service systems is time-consuming, and the process is continuously becoming more difficult because of the increased usage of the attached piping materials such as fittings and hangings in addition to their complicated construction processes. To improve this problem, the Korean authority provides a simple estimation method for the attached-material rate regarding the main piping material, which is the most time-consuming work in the architectural-mechanical estimation. However, to be an applicable method on construction sites, a proper conversion rate of the attached-piping material is still required for the proposed method regarding building usage and working types. Therefore, the purpose of this research is the calculation of the rate of the attached-piping materials such as the fittings and supports through the building of the mechanical-service work types of mechanical rooms, air conditioning, domestic water and hot-water supplies, and the drain-, vent-, and gas-piping work in office buildings that have been designed after 2010.

Attachment Rate Analysis of Airborne Chlorides by Construction Finish Material to Measure the Amount of Chlorides on the Surface (표면염화물량 산정을 위한 건축마감재별 비래염분 부착율 분석)

  • Cho, Gyu-Hwan;Ji, Dong-Hun;Jung, Jae-Min;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.57-58
    • /
    • 2014
  • For durability design to protect against chloride-induced corrosion, it is important to estimate the amount of chlorides on the surface. However, it is difficult to estimate the airborne chlorides, a boundary condition, due to the difference between the amount of chlorides attached to a surface of an actual structure and that in the air. Therefore, in this study the attachment rate analysis of airborne chlorides was evaluated for 13 types of finish materials. As a result, despite differences in the amount of airborne chlorides according to the finishing type, it was found that 60 percent of airborne chlorides were attached to mortar, 30 percent were attached to steel, and 25 percent were attached to tiles compared with the amount of chlorides in the air.

  • PDF

The Relationship between Amount of Chloride in Atmosphere and Attached Amount of Chloride of Architectural Material (대기 중 염분량과 건축 재료별 부착 염분량과의 관계)

  • Cho, Gyu-Hwan;Lee, Young-Jun;Lee, Hae-Seung;Hwang, Jong-Uk;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.98-99
    • /
    • 2013
  • The amount of surface chlorides of architectural structure in incoming salt environment depends on the characteristics of distribution of incoming salt in atmosphere. Therefore, many researches are being conducted on deducting the correlation between incoming salt amount attached to the surface of real structure and that of atmosphere after quantitative measurement. However, in real environment, these studies are somewhat far fetched. That is because incoming salt in atmosphere are changed by various climatic conditions and in the case of the structures surface, attached incoming salt may be carried away due to the rainfall. Therefore, this study aims to draw an improved proportional relation between the amount of sodium chloride in atmosphere and that attached to the surface of architectural structures by measuring the amount attached to each architectural material using artificial incoming salt generator that can control various climatic variables that can be caused in real environment.

  • PDF

Performance Evaluation of BIPV Systems Applied in School Buildings (학교 건축에 대한 BIPV시스템의 성능 평가)

  • Park, Kyung-Eun;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.5
    • /
    • pp.14-23
    • /
    • 2004
  • Building-integrated photovoltaic(BIPV) systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Besides of these benefits, the application of PV systems into school buildings tends to play an important role in energy education to students. In this context, this study aims to analyse the applicability of PV systems into school buildings. For an existing school building, four types of BIPV designs were developed; rooftops, wall-attached, wall-mounted with angle, and sunshading device. Based on energy modeling of those BIPV systems, the whole 60.1kWp rated PV installation is expected to yield about 65.6MWh of electricity, that is about 50% more than the annual electricity consumption of the school, 44MWh. It was also found that the applicability of the PV systems into the school building was very high, and the rooftop systems with the optimized angle was the most efficient in energy production, followed by sunshading, wall-mounted with angle and wall-attached. It concludes that school buildings have a reasonable potential to apply PV systems in the aspects of building elements and electricity production.

Joint Behavior and Wind Resistance Characteristics of the Composite Waterproof Method in Which the Sheet Layer is Partially Attached with Perforated Film and the Joint is FRP-Treated (타공필름에 의한 부분절연과 FRP로 조인트부를 강성접착한 복합방수공법의 조인트 거동 및 내풍압 특성)

  • Choi, Sung-Min;Kwon, Yong-Hwa
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.85-86
    • /
    • 2023
  • This study confirmed the improvement of the Composite Waterproof Method in which the sheet layer is partially attached with perforated film and the joint is FRP-treated.

  • PDF

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Suggestion of the Attached Piping Material Rate for the Mechanical Fire Protection Facilities in Office Buildings (업무용 건축물의 기계소방시설 배관 부속자재 요율 제시)

  • Park, Lyool;Park, Kyung-Soon;Yoon, Hang-Mook
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • In generally, the estimation work regarding building mechanical service system in comparison with other architectural estimations is time-consuming, and the process is continuously getting more difficult because of the increased usage of the attached piping materials such as fittings and supports in addition to their complicated construction processes. In order to improve this problem, the Korean authority provides a simple method to estimate the attached material rate regarding the main piping material, which is the most time-consuming work in the architectural mechanical estimation. However, to be an applicable method on construction site, a proper conversion rate of the attached piping material is still required for the proposed method regarding building usage and working types. Therefore, the purpose of this research is the suggestion of the material and labor cost rate of the attached piping materials such as the fittings and supports by work types and fitting methods of indoor fire, sprinkler, and extinguishing gas piping work of mechanical fire protection facilities in office buildings that have been designed after 2010.

The Study of Load Test Method for In-Site Casting Pile In High Rise Building. (초고층에서의 현장타설말뚝 재하시험방법 고찰)

  • Kim, Dae-Hak;Hong, Young-Kil;Han, Sung-Moo;Gu, Ung-Hwoe;Park, Chan-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.385-392
    • /
    • 2008
  • Modern city have had a lot of high-rise building in high standards and multi-level performance. Using of city space reach better stages by using integration. These skyscraper have increased working load on ground. that building is efficiently designed for that soil capacity is well applied. With material side, big size pile, high strength concrete and high strength steel is used for that getting enough lobby space and resisting load increased of high-rise building. limit load test and load transmitted test can make soil capacity optimized. By the way, method of measuring pile capacity is more advanced and bigger. pile type applied by high rise building have underground excavation space, also reflect regional soil property and have some fact reviewed. A lot of high rise building recently is built as land mark in Seoul, Busan and Incheon. about method of measuring capacity of foundation pile, example of construction field is compared and reviewed.

  • PDF