• Title/Summary/Keyword: Atomizing

Search Result 131, Processing Time 0.023 seconds

A STUDY ON HTGH-EFFICIENCY ATOMIZATION OF MOLTEN MATERIALS (PART 3 : MECHANISM AND CHARACTERISTICS OF ATOMIZATION) (Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구 (제3보 : 애토마이저의 미립화 기구와 특성))

  • Oh, J.G.;Kwon, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • An experimental study of twin-fluid atomization for powder metallurgy has been conducted using a specially designed atomizer in which liquid is first spread into a thin sheet and then exposed on both sides to high-velocity air. Inner air jet worked for supplying liquid and outer air jets disintegrated liquid sheet. The first result of this study were confined to the effect of atomizing quality through experiments with water. The experimental data will be extend to include the influence of atomizing air velocities on mean particle size through experiments with molten material. An experimental equation on the relationship between SMD and the related parameters was taken out; $$SMD=0.00302\frac{{(\sigma_L\;\rho_L\;D_L)}^{0.5}}{\rho_A(V_1+1.155\;V_2)/2}(1+\frac{W_L}{(W_{A1}/3.33)+W_{A2}})+0.0148(\frac{{\mu_L}^2}{\sigma_L\;\rho_L})^{0.425} \;{D_L}^{0.575}(1+\frac{W_L}{(W_{A1}/3.33)+W_{A2}})^2$$.

  • PDF

An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Snag-Uk;Jung, Won-Seok;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

A STUDY ON HIGH-EFFICIENCY ATOMIZATION OF MOLTEN MATERIALS (PART 1: AN EXPERIMENTAL STUDY ON SUPPLYING MECHANISM BY AIR JETS) (Atomize 법에 의한 용융소재의 고효율 미세화에 관한 연구 (제1보:공기제트에 의한 액체의 공급기구))

  • Oh, J.G.;Lee, Ch.W.;Seok, J.K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.35-42
    • /
    • 1997
  • An innovating technique of atomizer has been proposed to supply and to atomise molten materials. Both of a simple geometry of nozzle and an improved nozzle have been fabricated in the present study. With these nozzles, characteristics of the suction and disintegration have been empirically investigated. The important conclusions are as follows; In the case of a simple nozzle: 1) Although the sucking up and supplying of molten materials are available, the applications of powder metallurgy are limited. 2) It is concluded that the more air flow rate, $W_A$ or the shorter the height of air nozzle from the surface of supplied water, $L_h$, the more the atomizing mass of liquids, $W_L$. In the case of an improved nozzle: 3) The stable liquids can be supplied due to cut off the passage of surrounding air entrainment by air jets. 4) The atomizing mass of liquids, $W_L$ has affected not so much on the height of nozzle from the surface of supplied water, $L_h$ as that from the orifice, hc.

  • PDF

Study on the Development System of Rotary Atomizing Painting Equipment and Its Application (회전무화형 도장 기기의 개발체계 및 적용에 관한 연구)

  • Lee, Chan;Cha, SangWon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2002
  • Concurrent development system which includes design, analysis, basic experiment and performance test procedure for rotary atomizing painting equipment was established. Basic design specifications of the equipment parts were determined according to the overall design requirements of painting equipment using conceptual design model. On the basis of derived design specifications, design and analysis procedures was proposed for developing each equipment part. Also proposed are experiment and test methods to investigate the spray and transfer characteristics of designed painting equipment, and their measurement variable, process and evaluation criteria are constructed. The present development system was validated by applying its entire processes to the actual painting equipment.

  • PDF

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF

Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor (실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구)

  • 동종인;구우회;임대현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF

Spray Drying of Ferrite Powders and the Characteristics of the Granule (페라이트 분말의 분무건조와 제조된 과립의 특성)

  • 변순천;제해준;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.549-558
    • /
    • 1995
  • Mn-Zn ferrite granules were prepared by spray drying of the slurry containing different kinds and concentration of binders at various spray drying temperatures and atomizing pressures. The characteristics of the spraydried granules were analyzed according to the processing variables of spray drying and the slurries containing different solid loading and kinds and concentration of binders. Typical shape of the spray dried granules was spherical. The granules spray dried at 15$0^{\circ}C$ were more spherical and containing lower hollow percentage than any other granules prepared at higher temperature. The granules prepared at higher atomizing pressures were more spherical and become smaller in size. The granules prepared using slurry containing higher solid loading were larger in size and less defective in shape. As increasing the concentration of binder the number of donut-shaped granules was increased and the size distribution become broader. The granules prepared using the slurry containing PVA 205 were more spherical than those containing PVA 217 and PVA 117. As the amount of granules which were donut-shaped or dimpled increased the compaction response were less effective. The hollows were not fractured completely even at hight pressures and remained after sintering.

  • PDF

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.

A Study on the Atomizing Mechanism for the Swirl Nozzle (와권(渦卷) 노즐의 무화기구(霧化機構)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Sakai, Jun;Ishihara, Akira
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.81-97
    • /
    • 1987
  • Two nozzles with different size (Figure 2) were particularly designed to supply air through the swirl core into the central part of the liquid stream in the same parallel direction to produce a well-mixed air and water in the whirl chamber as spray liquid in bubble formation. Atomization was attempted to improve by using both the preliminary break-up process with less viscosity and less surface tension in the whirl chamber and the effects of increased frequency of the band of drops with the raised ambient air density in front of the nozzle orifice. The volumetric ratio between spray liquid and air on four levels was used to investigate the effects of air as a component of the mixture on atomization. The results of the experiment were summarized as follows; Droplet size became progressively finer as the operating pressure was increased in the range of $0.70kg/cm^2$ to $6.33kg/cm^2$, which was similar to the previous works. The new atomizing mechanism so-called 'air-center nozzle' gave a narrower range in droplet size distribution with smaller volumetric median diameter (VMD) than that of the existing spray system at a given pressure, which showed the possibility of improvement of atomization in a certain limit. The volumetric median diameter produced by the new atomizing mechanism was decreased from the central region toward the exterior edges across the spray pattern.

  • PDF

Physical and Chemical Properties of Atomizing EFOS as Fine Aggregate for Concrete (아토마이징 전기로 산화슬래그 잔골재의 물리·화학적 특성)

  • Beom-Soo Kim;Sun-Mi Choi;Sang-Chul Shin;Sun-Gyu Park;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.70-78
    • /
    • 2023
  • Blast furnace slag, a by-product of the steel industry, is mostly recycled as concrete admixture, but electric arc furnace slag has not been recycled to date. In particular, since electric arc furnace slag partially contains free lime (free-CaO) in the discharge, it is necessary to review this in order to recycle f or construction materials. Recently an atomizing process which is a method of rapidly cooling electric arc furnace slag has been developed and applied. Therefore, in order to use the fine aggregate of oxidized slag from electric furnace restored by this method as an aggregate for concrete, physical damage and chemical reviewing are required. In this study, a physical and chemical review was conducted on the fine aggregate of Electric Arc Furnace Oxidizing Slag (EFOS) as a by-product of the steel manufacturing process with atomizing process. In this experimental study, EFOS was experimentally examined about whether it can be used as concrete fine aggregate. Also, we intend to provide basic data for the future use of the EFOS fine aggregate. As a result of the experimental study, it was found that the fine aggregate of the EFOS satisfied the quality standards of the fine aggregate for concrete in most items specified by Korean Standard.