• Title/Summary/Keyword: Atomized powder

Search Result 143, Processing Time 0.027 seconds

Modelling for the Flying and Cooling Behaviors of the Centrifugally Atomized Particles (원심분무 입자의 비산 및 냉각 모델링)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • Flying and solidification behaviors of the particles manufactured by centrifugal atomization were investigated. Both models were solved by the explicit FDM. Flying calculation supported the experimental results that the finer particles flied shorter than coarser particles and that particles flied shorter for lower rotation velocity than for higher velocity. Cooling curve and dendrite arm spacing were predicted by use of heat transfer analysis.

  • PDF

Green Body Behaviour of High Velocity Pressed Metal Powder

  • Jonsen, P.;Haggblad, H.A.;Troive, L.;Furuberg, J.;Allroth, S.;Skoglund, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.22-23
    • /
    • 2006
  • High velocity compaction (HVC) is a production technique with capacity to significantly improve the mechanical properties of powder metallurgy (PM) parts. Investigated here are green body data such as density, tensile strength, radial springback, ejection force and surface flatness. Comparisons are performed with conventional compaction using the same pressing conditions. Cylindrical samples of a pre-alloyed water atomized iron powder are used in this experimental investigation. The HVC process in this study resulted in a better compressibility curve and lower ejection force compared to conventional quasi static pressing. Vertical scanning interferometry measurements show that the HVC process gives flatter sample surfaces.

  • PDF

New Process for Ti Alloy Powder Production by Using Gas Atomization

  • Fujita, Makoto;Arimoto, Nobuhiro;Nishioka, Kazuo;Miura, Hideshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.12-13
    • /
    • 2006
  • The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.

  • PDF

The Aging Characteristics of Mg-6 wt.% Al-1 wt.% Zn Alloy Prepared by Gas Atomization (가스분사법으로 제조된 Mg-6 wt.% Al-1 wt.% Zn 합금의 시효특성)

  • Lee, Du-Hyung;Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • The aging characteristics of gas atomized Mg-6 wt.% Al-1 wt.% Zn alloy were investigated and compared to those of cast Mg-6 wt.% Al alloy. The gas atomized Mg-6 wt.% Al-1wt.% Zn alloy powders had spherical morphology between 1 and 100 $\mu m$ in diameter. After compaction under the pressure of 700 MPa at $320^{\circ}C$ for 10 min, the Mg-6 wt.% Al-1 wt.% Zn alloy showed a grain size of approximately 40 $\mu m$ which is smaller than that of the cast Mg-6 wt.% Al alloy, and a relative compact density of approximately 93%. After ageing, the Mg-6 wt.% Al-1 wt.% Zn alloy showed much faster peak hardness than cast Mg-6 wt.% Al alloy. The Mg-6 wt.% Al-1 wt.% Zn alloy showed the new fine precipitations with ageing time, while the cast Mg-6 wt.% Al alloy was almost similar morphology.

Densification and Conolidation of Powders by Equal Channel Angular Pressing

  • Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Sun-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.978-979
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth. ECAP (Equal channel angular pressing) was used for the powder consolidation. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using an experimental method. It was found that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders.

  • PDF

Microstructural Characterization of Gas Atomized Copper-Iron Alloys with Composition and Powder Size

  • Abbas, Sardar Farhat;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of $Cu_{100-x}Fe_x$ (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -)

  • Ryu, Ho-Jin;Lim, Jae-Hyun;Kim, Ji-Soon;Kim, Jin-Chun;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

Martensitic Transformation Behaviors of Gas Atomized Ti50Ni30Cu20 Powders (Gas atomization으로 제조된 Ti50Ni30Cu20 합금 분말의 상변태 거동)

  • Kim, Yoen-Wook;Chung, Young-Soo;Choi, Eun-Soo;Nam, Tae-Hyun;Im, Yeon-Min
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • For the fabrication of bulk near-net-shape Ti-Ni-Cu shape memory alloys, consolidation of Ti-Ni-Cu alloy powders are useful because of their brittle property. In the present study, $Ti_{50}Ni_{30}Cu_{20}$ shape memory alloy powders were prepared by gas atomization and martensitic transformation temperatures and microstructures of those powders were investigated as a function of powder size. The size distribution of the powders was measured by conventional sieving, and sieved powders with the specific size range of 25 to $150\;{\mu}m$ were chosen for this examination. XRD analysis showed that the B2-B19 martensitic transformation occurred in the powders. In DSC curves of the as-atomized $Ti_{50}Ni_{30}Cu_{20}$ powders as a function of powder size, only one clear peak was found on each cooling and heating curve. The martensitic transformation start temperature($M_s$) of the $25-50\;{\mu}m$ powders was $31.5^{\circ}C$. The $M_s$ increased with increasing powder size and the difference of $M_s$ between $25-50\;{\mu}m$ powders and $100-150\;{\mu}m$ powders is only $1^{\circ}C$. The typical microstructure of the rapidly solidified powders showed cellular morphology and very small pores were observed in intercellular regions.

Preparation of Multicomponent Ceramic Powders by Ultrasonic Spray Pyrolysis

  • Youn, Jeong-Han;Chung, Byung-Joo;Sim, Soo-Man
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2000
  • The preparation of Y-doped $SrZrO_3$powder by ultrasonic spray pyrolysis was investigated as a representative system, in order to produce fine, single phase multicomponent oxide powders. A precursor solution containing metal nitrates, citric acid and ethylene glycol was atomized glycol was atomized with an ultrasonic spray nozzle. Gel particles formed by organic functional groups were pyrolyzed and subsequently calcined at $800^{\circ}C$ to obtain well-crystallized, single perovskite phase. Most of large particles exhibited macroscopic pores and weak agglomeration between primary particles. However, strong agglomeration was observed in the surfaces of large particles. The effect of the microstructures of these particles on size reduction to submicron particles was described.

  • PDF

Consolidation and Characterization of Cu-based Bulk Metallic Glass Composites (Cu기 벌크 비정질 복합체의 성형 및 특성)

  • Lee, Jin-Kyu;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.399-404
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composite was fabricated by spark plasma sintering (SPS) using of gas-atomized metallic glass powders and ductile brass powders. No defect such as pores and cavities was observed at the interface between the brass powder and the metallic glass matrix, suggesting that the SPS process caused a severe viscous flow of the metallic glass and brass phases in the supercooled liquid region, resulting in a full densification. The BMG composites shows some macroscopic plasticity after yielding, although the levels of strength decreased.