• 제목/요약/키워드: Atmospheric pressure injection

검색결과 55건 처리시간 0.021초

측정방법에 따른 흡기포트 분사식 다공 가솔린인젝터의 분무각 비교 (Comparison of Spray Angles of Multihole Port Fuel Gasoline Injector with Different Measuring Methods)

  • 김재호;임정현;노수영;문병수
    • 한국분무공학회지
    • /
    • 제5권3호
    • /
    • pp.17-26
    • /
    • 2000
  • The main parameter commonly used to evaluate spray distribution is spray angle. Spray angle is important because it influences the axial and radial distribution of the fuel. Spray angles were measured and compared for the two non-air assisted injectors such as 2hole-2stream 4hole-1stream injectors used for port fuel injection gasoline engines with n-heptane as a fuel by three different measuring techniques, i.e., digital image processing, shadowgraphy, and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35 MPa into the room temperature and atmospheric pressure environment. In digital image processing approach, the selection of the transmittance level is critical to obtain the edge of spray and hence to measure the spray angle. From the measurement results by the shadowgraphy technique, it is dear that the spray angle is varied during the spray injection period. The measurement results from spray patternator show that the different spray angles exist in different region. Spray angle increases with the increase in the injection pressure. it is suggested that the spray angle and stream separated angle should be specified when spray is characterized for 2hole-2stream injector, because spray angle is much different though stream separated angle is same. It was also considerably affected by the measurement techniques introduced in this experimental work. However, the optimal axial distance for measuring the spray angle seems to be at least 60-80 mm from the injector tip for two non-air assisted injectors.

  • PDF

유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구 (A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature)

  • 김광일;유원열;이충훈
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

디젤 및 DME 연료의 거시적 분무특성 비교 (Comparisons of Diesel and DME Fuel in Macroscopic Spray Characteristics)

  • 박준규;전문수;박성욱
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.205-209
    • /
    • 2012
  • This study focused on comparing macroscopic characteristics of DME and diesel fuel experimentally. DME fuel is one of the most promising alternative fuels because of its superiority in atomization characteristic and clearness in terms of exhaust gas compared with existing fossil fuels. In addition, DME fuel has high cetane number so it could be applied to compression ignition engine. However because DME fuel exists in gas phase at room temperature and atmospheric pressure, and it corrodes rubber parts of fuel line, DME fuel is hard to apply to commercial vehicles. To establish knowledge about DME fuel and furthermore, to develop commercial DME vehicles such as passenger cars, many research have been proceeded steadily. The present study, by comparing spray characteristics of DME fuel to those of diesel fuel, improved atomization characteristics in DME were revealed. Injection quantity measurement and spray visualization experiment were progressed and it was revealed that DME fuel shows small injection quantity than that of diesel fuel and axial development of spray in terms of spray tip penetration decreases when DME fuel was injected.

주사바늘 전극형 오존발생기 특성 연구 (Observation and Characteristics of Ozonizer using Injection Needle Electrode)

  • 박현미;권영학;박원주
    • 조명전기설비학회논문지
    • /
    • 제29권12호
    • /
    • pp.77-82
    • /
    • 2015
  • Ozone is a powerful disinfectant and oxidizing agent, and it is used in a wide range of applications, such as waste water treatment, food processing, etc.. There is also a great potential of using ozone in new emerging medical applications, such as ozone dentistry and ozone oxygen therapy. For these purposes, simple, small, compact and efficient sources of ozone are needed. In this study, in order to increase the current-voltage range of the discharge and to avoid the overheating of the gas in the ozonizer we suggested ozonizer of injection needle and plate electrode type(INP Type) with the gas through the needle. A ozonizer of INP type have been investigated by focusing on ozone concentration and yield according to flow rates and Gap of two electrodes. The results of studies of ozone production for DC corona discharge in oxygen at atmospheric pressure about the ozonizer of INP type. The ozone concentration and the generation yield increased as the gap of two electrodes and gas flow were decreased. Also, when the gap of two electrodes and gas flow with no change, the ozone concentration and generation yield each have variation of direct proportion and inverse proportion with discharge voltage.

모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구 (Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor)

  • 진유인;유경원;민성기;김홍집
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

극저온 제트 유동에 대한 분사기 형상의 영향 (Effect of Injector Geometry on Cryogenic Jet Flow)

  • 조성호;박구정;길태옥;윤영빈
    • 한국항공우주학회지
    • /
    • 제39권4호
    • /
    • pp.348-353
    • /
    • 2011
  • 액체 질소를 이용하여 극저온 단일 제트 유동의 특성을 관찰하였다. 고압 챔버 내부에 액체 질소를 분사하여 단일 제트를 생성, 주위기체압력을 변화시킴으로써 아임계 조건부터 초임계 조건의 주위 환경에 따른 제트의 특성 변화를 확인하였다. 또한 분사기의 길이 대 직경비 및 분사기 내부 형상의 변화에 따른 제트의 특성 변화를 파악하였다. 유동 가시화를 통하여 극저온 제트의 형상 및 액주의 지름을 측정하였으며, 이로부터 액주의 확산각을 계산하여 이전 연구 결과와 비교하였다. 아임계 조건 및 초임계 조건에서의 제트의 형상 변화를 관찰하였으며, 주위기체압력이 대기압과 동일할 경우 제트 유동에서 불안정이 발생함을 확인하였다. 또한 주위기체압력이 증가함에 따라 액주의 확산각이 점차 증가하다가 일정 압력 이상에서 거의 일정하게 유지됨을 확인하였다.

위상 도플러 입자 분석기(PDPA)를 이용한 가솔린 포트 인젝터의 입자 크기 및 속도 프로파일에 관한 연구 (A Study on the Particle Size and Velocity Profile on a Gasoline Port Injector Using a Phase Doppler Particle Analyzers (PDPA))

  • 김효진;조현;삭다 통차이;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.300-307
    • /
    • 2017
  • This study is to investigate particle size and velocity profile of gasoline port injector using Phase Doppler Particle Analyzer (PDPA). In this experiment, a GV 250 Delphi port injector used for motorcycles was used for liquid injection. The injector consists of four holes and has a static flow rate of 2.13 g/s. The fuel used in the injection was N-heptane, which is similar to gasoline, as an alternative fuel. The test fuel was injected at an atmospheric temperature of $20^{\circ}C$ and an open atmosphere of 1 atm. The injection time was 10 ms and the injection pressure was 3.5 bar in PDPA experiment. The experimental target position was fiexd at 30, 50 and 75 mm from the nozzle tip and data were collected for a total of 10,000 samples. The experimental results show that the length diameter (D10), the Sauter mean diameter ($D_{32}$), and the mean droplet velocity (MDV) are $45-54{\mu}m$, $99-115{\mu}m$ and 15-21 m/s, respectively.

액체로켓분사기 해석을 위한 실제유체 기반의 난류연소모델 개발 (Development of Real-Fluid based Flamelet Modeling for Liquid Rocket Injector)

  • 김성구;최환석;박태선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.150-155
    • /
    • 2010
  • 액체로켓 분사기는 추진 성능과 연소 안정성, 그리고 열유속 특성을 지배하는 가장 중요한 요소이다. 그러나 분사기 근방에서 일어나는 고압 연소 현상에 대한 근본적인 이해의 부족으로 분사기의 개발 과정은 대부분 경험적 설계방법과 고비용의 연소시험에 의존해 왔다. 본 연구는 액체로켓 연소 모델링과 관련된 최근 연구 동향들을 토대로 시작되었다. 층류화염편 기반의 난류연소모델을 초임계 압력 조건에서 나타나는 실제유체 거동을 고려할 수 있도록 확장하였으며, 극저온 질소분사, 상압 조건하의 난류제트화염, 그리고 고압의 기체수소/액체산소 동축 분사기에 적용하여 해석모델의 효용성을 확인하였다.

  • PDF

Quantitative Approaches for the Determination of Volatile Organic Compounds (VOC) and Its Performance Assessment in Terms of Solvent Types and the Related Matrix Effects

  • Ullah, Md. Ahsan;Kim, Ki-Hyun;Szulejko, Jan E.;Choi, Dal Woong
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권1호
    • /
    • pp.1-14
    • /
    • 2017
  • For the quantitative analysis of volatile organic compounds (VOC), the use of a proper solvent is crucial to reduce the chance of biased results or effect of interference either in direct analysis by a gas chromatograph (GC) or with thermal desorption analysis due to matrix effects, e.g., the existence of a broad solvent peak tailing that overlaps early eluters. In this work, the relative performance of different solvents has been evaluated using standards containing 19 VOCs in three different solvents (methanol, pentane, and hexane). Comparison of the response factor of the detected VOCs confirms their means for methanol and hexane higher than that of pentane by 84% and 27%, respectively. In light of the solvent vapor pressure at the initial GC column temperature ($35^{\circ}C$), the enhanced sensitivity in methanol suggests the potential role of solvent vapor expansion in the hot injector (split ON) which leads to solvent trapping on the column. In contrast, if the recurrent relationships between homologues were evaluated using an effective carbon number (ECN) additivity approach, the comparability assessed in terms of percent difference improved on the order of methanol (26.5%), hexane (6.73%), and pentane (5.24%). As such, the relative performance of GC can be affected considerably in the direct injection-based analysis of VOC due to the selection of solvent.

가솔린 직접분사식 고압선회 분사기의 분무 영역별 분무 특성 고찰 (Spray Characteristics for Specified Regions of High Pressure Swirl Injcetor in Gasoline Direct Injection Engine)

  • 송범근;김원태;강신재
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.9-16
    • /
    • 2003
  • According as the industry was developed, the pollution of the environment and atmosphere rose up to the surface. So, the focus is now concentrated on the engines of affinity for nature. And the investigators make more effort to the improvement in the performance of engines, depending to the prices of oil and the anxiety about the exhaustion of the fossil fuel go up. So the GDI engines head up for these necessities. In this experimental study, the spray flow characteristics for a commercial injector equipped in the present GDI engine were investigated, which had a strong influence on the engine performance and emissions. The experiment was performed at the injection pressures of 1, 3, 5 and 7MPa under the atmospheric condition. A PDPA system was used to specify the flow characteristics of the spray. Also, the global spray behavior classified into three regions as leading, main spray and vortex cloud region, was analyzed by using a visualization system. And the regions were compared with each other.