• Title/Summary/Keyword: Atmospheric pressure injection

Search Result 55, Processing Time 0.022 seconds

Development of a Microplasma Source under Atmospheric Pressure using an External Ballast Capacitor (방전에너지 제어용 외부 커패시터를 이용한 대기압 마이크로 플라즈마 소스 개발)

  • Ha, Chang-Seung;Lee, Je-Hyun;Son, Eui-Jeong;Park, Cha-Soo;Lee, Ho-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.31-38
    • /
    • 2013
  • A pulse driven atmospheric plasma jet controlled by external ballast capacitor is developed. Unlike the most commonly use DBD sources, the proposed device utilizes bare metal electrode. The discharge energy per pulse can precisely be determined by changing voltage and capacitance of the ballast capacitor. It is shown that the device can provide wide range of plasma, from stable glow mode to near arc state. Current-voltage waveforms, optical emission spectra and discharge images are investigated as a function of an injection energy. The OES shows that He and oxygen lines are increased as a function of the external ballast capacitor. Ozone and rotational temperature have similar tendency with a power consumption. The feeding gas is He and the applied DC voltage is from 400V to 800V when the gap distance is $500{\mu}m$.

Development of Pressure Sensor for Identifying Guinea Pig's Large Intestinal Motility Caused by Drug (약물 투여에 따른 기니피그 대장 운동 측정을 위한 압력센서 개발)

  • Park, Jae-Soon;Park, Jung-Ho;Kim, Eung-Bo;Cho, Sung-Hwan;Jang, Su-Jeong;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, in order to quantify the peristalsis occurrence in a guinea pig's large intestine, a miniaturized air-gap capacitive pressure sensor was fabricated through micro-electro-mechanical system (MEMS). The proposed pressure sensor is a two-layered biocompatible polyimide substrate consisting of an air-gap capacitive plates between the substrates. The proposed pressure sensor was designed with a careful consideration of the structure and motility mechanism of the guinea pig's large intestine. Artificial pellets were mounted on a prototype pressure sensor to provide some redundancies in the form of size and shape of the guinea pig feces. Capacitance of a prototype sensor was recorded to be 2.5 ~ 3 pF. This capacitance value was later converted to count value using a lab fabricated data conversion system. Sensitivity of the pressure sensor was recorded to be below 1 mmHg per atmospheric pressure. During in vivo testing, artificial peristalsis caused by drug injection was measured by inserting the prototype pressure sensor into the guinea pig's large intestine and pressure data obtained due to artificial peristalsis was graphed using a labview program. The proposed pressure sensor could measure the pressure changes in the proximal, medial, and distal parts of the large intestine. The results of the experiment confirmed that pressure changes of guinea pig's large intestine was proportional to the degree of drug injection.

Experimental Study of the Effects of Nozzle Hole Geometry for di Diesel Engine (디젤엔진에서 노즐 홀 형상효과의 실험적 연구)

  • Ku, Kun-Woo;Lee, Young-Jin;Kim, In-Su;Lee, Choong-Won
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.154-159
    • /
    • 2007
  • Spray tip penetration and spray angle for one main injection were measured at the atmospheric condition with the fuel injection pressure of 270 bar and 540 bar. It investigates an effect of different nozzle hole geometry of conventional cylindrical one and those of elliptical ones. Injection period represented by injector pulse drive was fixed at 1ms. From the result of this study, it is shown that spray tip penetration becomes shorter and spray angle becomes wider with the elliptical nozzle hole geometry due to fast break-up of a fuel liquid column.

  • PDF

Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods (측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교)

  • Kim, K.J.;Rhim, J.H.;No, S.Y.;Moon, B.S.;Kim, J.Y.;Kang, K.G.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF

A Study on the Fuel Behaivor with Cavity Diameter in a Gasoline Direct Injection Engine (직분식 가솔린 엔진에서 피스톤 캐비티 반경에 따른 연료 거동 분석)

  • Kim, Tae-An;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.472-477
    • /
    • 2003
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The images of vapor phases were measured in the motoring engine using exciplex fluorescence method. The conventional engine was modified as GDI engine with swirl flow. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behavior and fuel distribution inside of cylinder. Three injection timings were set at BTDC $180^{\circ}$, $60^{\circ}$and $60^{\circ}$. With a fuel injection timing of BTDC $60^{\circ}$, fuel-rich mixture was concentrated in near the cavity center. With a fuel injection timing of BTDC $60^{\circ}$, fuel-rich mixture level in the center region was highest in the S-type during the late compression stroke. With a fuel injection timing of BTDC $180^{\circ}$, fuel was not affected in a piston cavity and generally distributed as homogeneous mixture.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

An experimental study on initial dispersion process of diesel fuel spray (디젤유분무의 초기분산과정에 관한 실험적 연구)

  • 허종철;구자왕;양옥룡
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-49
    • /
    • 1991
  • This study is to investigate the dispersion characteristics of diesel fuel spray in the initial stage of the beginning of the injection under the condition of room temperature and atmospheric pressure. It is difficult to analyse that the diesel fuel spray in diesel engine has unsteady intermittent spray. So author installed a fuel accumulator and an electromagnetic controller in order to keep the constant fuel injection rate with the time variation. With this modified fuel injection system, spray tip penetration, spray angle and initial spray development process are investigated by instantaneous photographic method. The results obtained in this study are as follows : 1) The initial shape of injection of diesel fuel spray shows the form of non-disintegrated intact core, but the formation of ligaments increasingly grows as the time increases. It can also be shown that fine droplets become disintegrated out from the ligaments. 2) The slope of spray tip penetration was changed to two different tendencies with time. The transition point of the slope is shown at the time of around between 0.09 msec and 0.4 msec from the beginning of injection. This is transition time from non-disintegrated intact core to formation of ligaments.

  • PDF

The Effect of Piston Bowl Shape on Behavior of Vapor Phase in a GDI Engine (직분식 가솔린기관 내에서 피스톤 형상이 연료혼합기 거동에 미치는 영향)

  • Hwang, Pil-Su;Gang, Jeong-Jung;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2002
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure was 5.1MPa. Two dimensional spray fluorescence image of vapor phase was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC 90$^{\circ}$, 80$^{\circ}$, 70$^{\circ}$, and 60$^{\circ}$. With a fuel injection timing of BTDC 90$^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC 60$^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine (피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구)

  • Hwang, Pil-Su;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

Performance Test and Calculation of Recirculation Line in Propellant Feeding System (기체공급계 재순환배관의 성능시험 및 계산)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • The performance test of recirculation line in propellant feeding system was carried out. Liquid oxygen was used as cryogenic propellant and helium was used as recirculation promotion gas. Tests were done in cases at atmospheric pressure and at pressure of 4 barg in the ullage space of propellant tank. Liquid oxygen recirculation flowrate with helium injection flowrate and temperature distribution along the line were measured. There was appropriate helium injection flowrate for gas-lift recirculation system. Test data were used to make calculation program by test data correlation method. In this paper the procedure of calculation was presented and the results were compared to test data.