• Title/Summary/Keyword: Atmospheric organic aerosol

Search Result 90, Processing Time 0.033 seconds

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Investigation of Chemical Characteristics of $PM_{2.5}$ during Winter in Gwangju (겨울철 광주지역 $PM_{2.5}$의 화학적 특성 조사)

  • Ko, Jae-Min;Bae, Min-Suk;Park, Seung Shik
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.89-102
    • /
    • 2013
  • 24-hr $PM_{2.5}$ samples were collected from January 19 through February 27, 2009 at an urban site of Gwangju and analyzed to determine the concentrations of organic and elemental carbon(OC and EC), water-soluble OC(WSOC), eight ionic species($Na^+$, $NH^{4+}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), and 22 elemental species. Haze phenomena was observed during approximately 29%(10 times) of the whole sampling period(35 days), resulting in highly elevated concentrations of $PM_{2.5}$ and its chemical components. An Asian dust event was also observed, during which $PM_{2.5}$ concentration was 64.5 ${\mu}g/m^2$. Crustal materials during Asian dust event contributed 26.6% to the $PM_{2.5}$, while lowest contribution(5.1%) was from the haze events. OC/EC and WSOC/OC ratios were found to be higher during haze days than during other sampling days, reflecting an enhanced secondary organic aerosol production under the haze conditions. For an Asian dust event, enhanced concentrations of OC and secondary inorganic components were also found, suggesting the further atmospheric processing of precursor gases during transport of air mass to the sampling site. Correlations among WSOC, EC, ${NO_3}^-$, ${SO_4}^{2-}$, and primary and secondary OC fractions, which were predicted from EC tracer method, suggests that the observed WSOC could be formed from similar formation processes as those of secondary organic aerosol, ${NO_3}^-$ and ${SO_4}^{2-}$. Results from principal component analysis indicate also that the observed WSOC was strongly associated with formation routes of the secondary organic and inorganic aerosols.

Seasonal characteristics of Elemental and Orgainc Carbon (미세입자 ($PM_{2.5}$) 에 포함된 탄소농도계절 특성)

  • 강병욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.103-112
    • /
    • 2000
  • Elemental carbon(EC) and organic carbon(OC) in fine particles (PM2.5) were collected from October 1995 through August 1996 in the Chongju area. The annual mean concentrations of EC and OC were 4.44 and 4.99 $\mu\textrm{g}$/m3 respectively. EC showed seasonal variation (p<0.01) The magnitude of the seasonal mean EC concen-tration progresses in the following manner : fall>winter>spring>summer. However OC was not statistically seasonal difference(p=0.20) The annual average OC/EC ratio was 1.12 suggesting that organic carbon measured may by emitted directly in particulate form(primary aerosol) The contribution of EC to PM2.5 mass follows a general pattern in which fall(14.6%) > winter (9.8%) >spring(7.8%) =summer(7.8%) and the contribution of OC to the PM2.5 mass varies in order fall(13.8%) >winter(11.3%) >spring(10.5%) >summer (9.4%) Total carbona-ceous particles(EC and OC) accounted for 17-28% of the PM2.5 mass.

  • PDF

Characteristics of Visibility Impairment by Semi-Continuous Optical and Chemical Property Monitoring of Aerosols in Seoul (에어로졸의 광학 및 화학 특성 준실시간 모니터링을 통한 서울지역 시정 감쇄 분석)

  • Park, Jong-Sung;Park, Seung-Myung;Song, In-Ho;Shin, Hye-Jung;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.319-329
    • /
    • 2015
  • The characteristics of aerosol light extinction were investigated by comparing measured and calculated extinction coefficient to understand the contribution of air pollutants on visibility impairment for data during 4 months (Jan~ April), 2014. The integrated nephelometer and aethalometer system were installed to measure the scattering and absorption coefficients of aerosol as well as BAM 1020, MARGA, semi-continuous OCEC analyzer, and online-XRF to calculate the extinction coefficient. The IMPROVE_2005 equation was used to determine the contributions of different chemical components on visibility impairment in $PM_{2.5}$ and $PM_{10}$ due to highest correlation with measured data. Sulfate, nitrate, and organic mass by carbon (OMC) of fine aerosol were the major contributors affecting on visibility impairment. Total contributions to light extinction were calculated as $631.0Mm^{-1}$ for the worst-case and $64.4Mm^{-1}$ for the best-case. The concentrations of aerosol component for the worst-case were 38.4 times and 45.5 times larger than those of the best-case for $(NH_4)_2SO_4$ and $NH_4NO_3$, respectively. At lower visibility condition, in which extinction coefficient was higher than $400Mm^{-1}$, extinction coefficient varied according to the relative humidity variation regardless of $PM_{2.5}$.

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin (XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사)

  • Jeong, Jae-Uk;Kim, Ja-Hyun;Park, Seung-Shik;Moon, Kwang-Joo;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

Comparison of Chemical Composition of Particulate Matter Emitted from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

  • Lee, Jong Tae;Son, Jihwan;Kim, Jounghwa;Choi, Yongjoo;Yoo, Heung-Min;Kim, Ki Joon;Kim, Jeong Soo;Park, Sung Wook;Park, Gyutae;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Particulate matter (PM) in the atmosphere has wide-ranging health, environmental, and climate effects, many of which are attributed to fine-mode secondary organic aerosols. PM concentrations are significantly enhanced by primary particle emissions from traffic sources. Recently, in order to reduce $CO_2$ and increase fuel economy, gasoline direct injected (GDI) engine technology is increasingly used in vehicle manufactures. The popularization of GDI technique has resulted in increasing of concerns on environmental protection. In order to better understand variations in chemical composition of particulate matter from emissions of GDI vehicle versus a port fuel injected (PFI) vehicle, a high time resolution chemical composition of PM emissions from GDI and PFI vehicles was measured at facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Continuous measurements of inorganic and organic species in PM were conducted using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The HR-ToF-AMS provides insight into non-refractory PM composition, including concentrations of nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol, and organic mass with 20 sec time resolution. Many cases of PM emissions during the study were dominated by organic and nitrate aerosol. An overview of observed PM characteristics will be provided along with an analysis of comparison of GDI vehicle versus PFI vehicle in PM emission rates and oxidation states.

Aerosol Chemistry in the Marine Environment: Inference of Inter-logic Relationships from the Concentrations and Ratios of Sonic Constituents (해양환경의 에어로졸 화학- 농도와 함량비를 이용한 이온성분간의 관계에 대한 추론)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • The aerosol concentrations of ionic components were measured on a daily basis from a coastal monitoring site located at Kosan, Cheju Island from 26 September to 5 October 1997 as a field-intensive for a LRTAP project The chemical species we investigated include most of important inorganic species (i.e., Cl-, NO3-, F-, SO42-, Na+, NH4+, and K+) and some organic species (i.e. formats, acetate, and methanesulfonate (MSA) ions). The concentration data of those important inorganic and organic species obtained during this study were evaluated to properly address their chemical and physical characteristics. Most of major inorganic components including sulfate, sodium, chloride, and potassium ions exhibited very conservative relationships with each other such that the concentration ratios of any pair are quite analogous to that of seawater ratio. Since the oceans serve as the major sources of ionic constituents, their concentration changes appear to be senstively reflected by the factors affecting air-sea processes such as an increase in wind speed or changes in wind direction. A comparative analysis of sulfur-containing species such as seasalt (SS) and nonseasalt (NSS) sulfate and MSA were also made to assess the factors influencing the S cycling. An evaluation of NSS/SS ratios suggests that most of sulfate be associated with NSS fraction rather than 55 one. The finding of lower MSA/NSS-SO42- ratio along with a line of physical evidence such as intrusion of anthropogenically affected air mass suggests that the oxidation of S species have been promoted under the conditions encountered during the study period. Finally, the concentration data of carboxylic species (such as formats and acetate ions) were also analyzed. Although the existence of temporal trends were difficult to assess, these data indicate that their contribution to the precipitation acidity may not be significant enough.

  • PDF

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.