• 제목/요약/키워드: Atmospheric mixing layer height

검색결과 24건 처리시간 0.022초

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

항공기를 이용한 서해안에서의 SO$_2$ 및 NO$_{x}$의 측정 (Aircraft Measurement of SO$_2$, NO$_{x}$ over Yellow Sea Area)

  • 김병곤;차준석;한진석;박일수;김정수;나진균;최덕일;안준영;강창국
    • 한국대기환경학회지
    • /
    • 제13권5호
    • /
    • pp.361-369
    • /
    • 1997
  • In order to investigate the abundance and transboundary fluxes of air pollutants over the Yellow Sea, airborne measurements were made aboard the SF-600 aircraft (Pan-Asia Engineering) in March, 1996. The data presented in this paper are preliminary results and airborne experiment will be carried out until 1999. The vertical profile of relevant meteorological parameters such as temperature, water vapor, wind direction and wind speed were also observed at Taean. Mixing layer height was about 1000~1100m during the flights. The SO$_2$ and NO$_{x}$ concentrations were 3~6 ppb and 5~7 ppb below 1000 m, within 1 ppb and 3~5 ppb at 1000~2000m, respectively. Backward trajectory analyses were also carried out. A mathematical method by Lelieveld et al.(1989) was used to estimate the flux of air pollutants through the planetary boundary layer of Yellow Sea area. Transboundary fluxes were calculated using the measurement results with respect to the pollutants concentration, depth of the planetary boundary layer, wind speed and wind direction. The estimated transboundary flux of SO$_2$through the western boundary of Korea was about 39~42 tons/hour.r.

  • PDF

기단성 뇌우 발생시 지표오존농도의 변화 특성 (Characteristics of the surface ozone concentration on the occurrence of air mass thunderstorm)

  • 전병일
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.419-426
    • /
    • 2003
  • This study was performed to research ozone concentration related to airmass thunderstorm using 12 years meteorological data(1990~2001) at Busan. The occurrence frequency of thunderstorm during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence at summertime(59%). In case August 4, 1996, increase of ozone concentration was simultaneous with the decrease of temperature and increase of relative humidity, In case July 23, 1997, ozone concentration of western site at Busan increased, while its of eastern site decreased as airmass thunderstorm occurred(about 1500LST). It is supposed that these ozone increases are the effect of ozone rich air that is brought down by cumulus downdrafts from height levels where the ozone mixing ratio is larger. Thunderstorms can cause downward transport of ozone from the reservoir layer in the upper troposphere into planeta교 boundary layer(PBL). This complex interaction of source and sink processes can result in large variability fer vertical and horizontal ozone distributions. Thus a variety of meteorological precesses can act to enhance vertical mixing between the earth's surface and the atmospheric in the manner described fer thunderstorm.

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E.;Kanda, Isao;Okazaki, Yukiyo;Wakamatsu, Shinji;Basaldud, Roberto;Horikoshi, Nobuji;Ortinez, Jose A.;Ramos-Benitez, Victor R.;Cardenas, Beatriz
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권2호
    • /
    • pp.114-127
    • /
    • 2015
  • In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

A Simple Model for Dispersion in the Stable Boundary Layer

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are 'A' and 'B' at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.

  • PDF

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.

도심 실제 거칠기 적용과 장래 도심 개발계획에 따른 국지 기상장 변화 수치 모의 (The Effect of Atmospheric Flow Field According to the Urban Roughness Parameter and the Future Development Plan on Urban Area)

  • 최현정;이화운;김민정
    • 한국환경과학회지
    • /
    • 제19권6호
    • /
    • pp.703-714
    • /
    • 2010
  • In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.

서울지역 연직 오존 분포: 2003년 6월 6~9일 오존존데 관측 (Vertical Ozone Distribution over Seoul: Ozonesonde Measurements During June 6~9, 2003)

  • 황미경;김유근;오인보;송상근;임윤규
    • 한국대기환경학회지
    • /
    • 제24권2호
    • /
    • pp.196-205
    • /
    • 2008
  • 오존 농도와 기상 인자의 연직관측을 수행하여 오존분포와 하부 대기구조와의 관계를 분석하였다. 관측은 서울 방이동에서 2003년 6월 $6{\sim}9$일에 하루 2회씩(주 야간)총 8회에 걸쳐 이루어졌으며, 고도 5 km 이내의 관측결과를 중심으로 대기경계층 일변화와 연직 오존농도 변화를 집중분석하였다. 관측 결과, 대기경계층 내 야간안정층 및 혼합층 발달에 따라 큰 오존농도 분포변화를 확인할 수 있었다. 야간에는 안정층 내에서 $NO_x$ 적정반응으로 0에 가까운 낮은 오존농도를 나타내었다. 한편 오후에는 혼합층 내에서 비교적 일정한 오존농도 분포를 나타내며, 대기경계층 상부에서 100 ppb 이상의 최고 농도가 관측되었다. 특히 지표부근 오존농도가 높았던 6월 8일의 관측결과를 통해, 오존의 생성 소멸과 관련한 국지효과뿐만 아니라 제한된 혼합층 발달이 고농도오존 발생에 중요한 영향을 미침을 확인할 수 있었다. 또한 관측 기간 중, 국지규모 이상의 수송효과에 의한 대기경계층 상부의 농도 상승과 종관기류 변화에 따른 수송 효과가 간접적으로 확인되었다. 연직 오존분포 분석에 있어 충분치 않은 관측 자료로 인해 정확한 시간적 변동을 고찰할 수 없는 한계를 보였다. 하지만 본 연구를 통해 서울지역 대기하층의 오존 분포 변화와 기상학적 특징을 살펴봄으로서 고농도오존 현상의 역학적인 이해를 도울 것으로 생각되며, 관측 결과는 도시 오존제어를 위한 광화학 수치모델링의 기초 자료로 활용될 수 있을 것이다.

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

서울과 백령도의 대기 중 입자상 수은의 분포 특성 및 발생원 추정연구 (Source Identification and Trends in Atmospheric Particulate-bound Mercury at Seoul and Baengnyeong, South Korea)

  • 노샘;박광수;김혁;유석민;임용재;이민도;석광설;김영희
    • 환경분석과 독성보건
    • /
    • 제21권4호
    • /
    • pp.220-228
    • /
    • 2018
  • $PM_{2.5}$-bound mercury (PBM) was monitored at weekly intervals for three years (from 2014 to 2016) at an urban (Seoul) and rural site (Baengnyeong) in South Korea. The average PBM concentrations in $PM_{2.5}$ samples over the entire sampling period were $12{\pm}11pg/m^3$ and $36{\pm}34pg/m^3$ for Baengnyeong and Seoul, respectively. Seasonal differences were pronounced, with concentrations being highest in winter due to local meteorological conditions (high gas-particle coefficient due to low temperature and low mixing layer height in winter) as well as seasonal factors, such as coal combustion for heating purposes in China. In Baengnyeong, the significant positive correlation of PBM with $PM_{2.5}$, air pollutants, and heavy metals suggested that coal combustion in China might be the most important source of ambient mercury in Korea. In winter, no correlation of PBM with $PM_{2.5}$, air pollutants, and heavy metals was seen in Seoul. Furthermore, Seoul showed higher $PBM/PM_{2.5}$ and $Pb/PM_{2.5}$ ratios in winter due to the strong atmospheric oxidation-reduction reaction conditions as well as local and regional PBM sources. We conclude that immediate attention must be given to addressing PBM levels in Korea, including considering it as a key component of future air quality monitoring activities and mitigation measures.