• Title/Summary/Keyword: Atmospheric environment impact assessment

Search Result 63, Processing Time 0.021 seconds

A Study of Air Dispersion Models, in Road Environmental Impact Assessment (도로환경영향평가 시 대기확산모델의 적합성 연구(CALINE4와 CAL3QHCR 모델을 중심으로))

  • 김아름;구윤서;전의찬;강혜진
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.305-306
    • /
    • 2003
  • 현재 환경영향평가가 이루어지고 있는 전체사업 가운데 도로사업을 통한 환경영향평가의 비율은 60%이상으로 다른 영향평가에 비해 상당한 부분이며, 또한 대기 중에 배출되는 총 오염물질 중에서 도로상의 차량에서 배출되는 오염물질이 최대로 70%까지 차지한다. 위와 같이 도로상에서 배출되는 오염물질의 영향을 파악하기위해서는 도로 주변에서의 현지측정을 통한 정량적 평가가 필요하나 이를 위해서는 많은 시간과 비용이 소요되어 현실적으로 불가능하다. 그러므로 이에 대한 대안으로 대기확산모델을 이용하여 도로상의 오염물질의 영향을 예측한다. (중략)

  • PDF

Review on Oil Spills and Their Effects

  • Lee, Hwa-Woon-;Nobuhisa-Kabayashi;Ryu, Cheong-Ro
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.47-50
    • /
    • 1991
  • With increasing offshore oil exploration, drilling, and production activities, and with a huge amount of petroleum being transported by tankers and pipelines through the ocean and coastal environment and resoures has been realized among government decision makers, oil industry personnel, and the general public. Assessment must be made of the potential risk of damage resulting from the exploration, development and transportation activities, based on predictive impact evaluations of the fate of hypothetical or real oil spills.(omitted)

  • PDF

Numerical Study on the Changes in Microscopic Meteorological Elements due to Land Use Variations in the Nakdong River Basin (낙동강 하천 토지이용 변화에 따른 미세규모 기상 요소의 변동에 관한 수치 연구)

  • Kim, Eun-Ji;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1597-1611
    • /
    • 2016
  • A numerical assessment using mesoscale-CFD (computational fluid dynamics) coupled A2C (atmosphere to CFD) model was carried out to analyze the variation of microscopic air flow pattern due to the construction of the Chilgok barrage in the Nakdong River. Scenarios with air flow patterns were classified into pre- and post-construction. The increased width of the river due to the construction of the Chilgok barrage induced obvious changes in moisture and the thermal environment around the river. However, air temperature variation was restricted within an area along the windward side in the numerical assessment. The impact of barrage construction on air temperature tends to be stronger during the nighttime than the daytime. It also stronger during the winter than the summer. In the simulation, the convergence of mesoscale wind is more pronounced after barrage construction than before. This is caused by the change of heat flux pattern induced by the widening of the river. Although this work is a case study with restricted atmospheric stability conditions that has several limitations in the numerical simulations, the impacts of the land-use changes brought about by the construction of the barrage in the river acceptable.

Urban Climate Mapping - The Case of Sanggye 4-Dong - (도시기후지도의 작성 -상계 4동을 중심으로-)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.27-36
    • /
    • 2002
  • The objective of this study is to improve the quality of the atmospheric environment by incorporating the factors of meteorology and urban climate into the field of urban and environmental planning. To this end, we have conducted a study on CLIMATOP and the mapping of urban climate, which are basic data used to analyze changes in climatic factors and the stagnation and accumulation of air pollutants. In particular, we focused on understanding the formation and movement of cold fresh air and its influx into urban areas by measuring and analyzing climatic factors. As a study result, classification criteria far CLIMATOP and a urban climatic map were made. In addition, we analyzed a digital elevation model, climatic data, and isothermal curves. As a result, we identified the corridor through which cold fresh air moves. We also observed that the temperature of the fluxed cold fresh air increased as land use changed. When the results of this study are applied to urban re-development and re-building projects, which require preliminary environmental assessment and environmental impact assessment, the practice proposed by this study is expected to contribute to the natural purification of air pollution activating the movement of cold fresh air and its influx into urban areas.

An Assessment of the Impact of Construction Activities on the Environment in Uganda: A Case Study of Iganga Municipality

  • Muhwezi, Lawrence;Kiberu, Faisal;Kyakula, Michael;Batambuze, Alex O.
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.4
    • /
    • pp.20-24
    • /
    • 2012
  • Construction while being an economic activity that provides facilities and infrastructure, it is beneficial to man in some aspects and detrimental in others. There have been environmental concerns related to construction activities globally which mainly focus on atmospheric emissions, depletion of natural resources and energy issues. This study was carried out to assess the impacts of construction activities on the environment in Iganga Municipality and to propose measures for their mitigation. The methodology included: review of relevant literature, observations of the general environmental effects of construction activities, focus groups and a survey conducted among construction industry role players to determine their perceptions and opinions regarding environmental impact of construction activities. The collected data was presented in tabular form and analysed by description of responses to questions. The study revealed that forests were the most greatly degraded due to high demand of timber for construction followed by wetlands degradation. The findings of this study will be useful to architects, designers and builders in order to carefully design buildings and other infrastructure that are environmentally friendly and sustainable. Construction materials and their mode of acquisition are harmful threats to the environment. There is need to reduce the consumption of these materials through recycling and reusing wastes to reduce on waste generation, use of virgin materials and the subsequent waste of energy used in new material production.

Impact of particulate matter on the morbidity and mortality and its assessment of economic costs

  • Ramazanova, Elmira;Tokazhanov, Galym;Kerimray, Aiymgul;Lee, Woojin
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.17-41
    • /
    • 2021
  • Kazakhstan's cities experience high concentrations levels of atmospheric particulate matter (PM), which is well-known for its highly detrimental effect on the human health. A further increase in PM concentrations in the future could lead to a higher air pollution-caused morbidity and mortality, causing an increase in healthcare expenditures by the government. However, to prevent elevated PM concentrations in the future, more stringent standards could be implemented by lowering current maximum allowable PM concentration limit to Organization for Economic Co-operation and Development (OECD)'s limits. Therefore, this study aims to find out what impact this change in environmental policy towards PM has on state economy in the long run. Future PM10 and PM2.5 concentrations were estimated using multiple linear regression based on gross regional product (GRP) and population growth parameters. Dose-response model was based on World Health Organization's approach for the identification of mortality, morbidity and healthcare costs due to air pollution. Analysis of concentrations revealed that only 6 out of 21 cities of Kazakhstan did not exceed the EU limit on PM10 concentration. Changing environmental standards resulted in the 71.7% decrease in mortality and 77% decrease in morbidity cases in all cities compared to the case without changes in environmental policy. Moreover, the cost of morbidity and mortality associated with air pollution decreased by $669 million in 2030 and $2183 million in 2050 in case of implementation of OECD standards. Thus, changing environmental regulations will be beneficial in terms of both of mortality reduction and state budget saving.

Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges

  • Ghosh, Jayadipta;Padgett, Jamie E.
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.649-673
    • /
    • 2012
  • Recent studies have highlighted the importance of accounting for aging and deterioration of bridges when estimating their seismic vulnerability. Effects of structural degradation of multiple bridge components, variations in bridge geometry, and comparison of different environmental exposure conditions have traditionally been ignored in the development of seismic fragility curves for aging concrete highway bridges. This study focuses on the degradation of multiple bridge components of a geometrically varying bridge class, as opposed to a single bridge sample, to arrive at time-dependent seismic bridge fragility curves. The effects of different exposure conditions are also explored to assess the impact of severity of the environment on bridge seismic vulnerability. The proposed methodology is demonstrated on a representative class of aging multi-span reinforced concrete girder bridges typical of the Central and Southeastern United States. The results reveal the importance of considering multiple deterioration mechanisms, including the significance of degrading elastomeric bearings along with the corroding reinforced concrete columns, in fragility modeling of aging bridge classes. Additionally, assessment of the relative severity of exposure to marine atmospheric, marine sea-splash and deicing salts, and shows 5%, 9% and 44% reduction, respectively, in the median value bridge fragility for the complete damage state relative to the as-built pristine structure.

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

Development of Road traffic Air Diffusion Simulation System using Graphic User Interface (GUI) (그래픽 유저 인터페이스(GUI)를 이용한 도로의 대기확산 예측시스템 개발)

  • Lee, Hwa-Woon;Oh, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.411-419
    • /
    • 2003
  • The assessment of environmental impact on NO$_2$ (or TSP) emitted by vehicles is important for local residents from the point of view of their health and environmental protection. In the course of field investigations, correct concentrations are measured and meteorological data are observed for numerical simulation. To determine background concentration for numerical simulation, annual average concentrations of NO$_2$ (or TSP) are estimated using the Puff-Plume model. If the estimated result affects the environment, it must be considered in the environmental conservation activity. To make the process of a estimation of environmental assessment more easily, this system is developed. Moreover, this system was supplied a Graphic User Interface (GH) for the user who calculated the concentration of air pollution exhausted from the traffic on general roads except special roads such as interchanges and entrances to tunnels. This system can offer not only the numerical result but also a graphic display. Even a beginner who is not a professional programmer can calculate the result easily.

Classification of Wind Sector in Pohang Region Using Similarity of Time-Series Wind Vectors (시계열 풍속벡터의 유사성을 이용한 포항지역 바람권역 분류)

  • Kim, Hyun-Goo;Kim, Jinsol;Kang, Yong-Heack;Park, Hyeong-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • The local wind systems in the Pohang region were categorized into wind sectors. Still, thorough knowledge of wind resource assessment, wind environment analysis, and atmospheric environmental impact assessment was required since the region has outstanding wind resources, it is located on the path of typhoon, and it has large-scale atmospheric pollution sources. To overcome the resolution limitation of meteorological dataset and problems of categorization criteria of the preceding studies, the high-resolution wind resource map of the Korea Institute of Energy Research was used as time-series meteorological data; the 2-step method of determining the clustering coefficient through hierarchical clustering analysis and subsequently categorizing the wind sectors through non-hierarchical K-means clustering analysis was adopted. The similarity of normalized time-series wind vector was proposed as the Euclidean distance. The meteor-statistical characteristics of the mean vector wind distribution and meteorological variables of each wind sector were compared. The comparison confirmed significant differences among wind sectors according to the terrain elevation, mean wind speed, Weibull shape parameter, etc.