• 제목/요약/키워드: Atmospheric aerosols

검색결과 380건 처리시간 0.02초

서울지역 겨울철 대기 에어로졸의 수 농도 및 산란계수 분석 (Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter)

  • 이현혜;김진영;이승복;배귀남;염성수
    • 한국입자에어로졸학회지
    • /
    • 제6권2호
    • /
    • pp.91-103
    • /
    • 2010
  • Size-segregated number concentration and scattering coefficient of urban aerosols were measured using an SMPS (scanning mobility particle sizer) and a nephelometer, respectively in Seoul, Korea, during the winter season of 2003. The average number concentrations of ultrafine particles (20~100 nm) and accumulation mode particles (100~600 nm) were $2,170\;particles\;cm^{-3}$ and $1,521\;particles\;cm^{-3}$, respectively. The scattering coefficient at the wavelength of 550 nm ranged from $62.6Mm^{-1}$ to $330.1Mm^{-1}$ and average value was $163.4Mm^{-1}$. The peak concentrations of ultrafine particles and accumulation mode particles were simultaneously recorded between 6:00 and 9:00 A.M., indicating the effect of vehicle emissions which are major air pollution sources in the urban atmosphere. On average, the number concentration of ultrafine particles was 1.4 times higher than that of accumulation mode particles, although it was a little higher during the morning peak time. The variation of aerosol scattering coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.g coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.

광학입자계수기를 이용한 안면도 연직 에어러솔 수농도 크기 분포 특성 (Features on the Vertical Size Distribution of Aerosols using Ballon-borne Optical Particle Counter at Anmyeon)

  • 최병철;;임재철;정상부;김윤석;;;;김상백;홍기만;이영곤;유희정
    • 대기
    • /
    • 제15권3호
    • /
    • pp.149-153
    • /
    • 2005
  • A balloon-borne Optical Particle Counter (hereafter "OPC Sonde"), which was developed by the atmospheric research group of Nagoya University, is used for getting the information of vertical profile of particle size and concentration in Anmyeon ($36^{\circ}32^{\prime}N$ $126^{\circ}19^{\prime}E$) on 18 March 2005. A range of five different particle sizes is shown in the vertical profile of aerosol number density estimated from the OPC Sonde. It was found that small size particles have vertically larger aerosol number density than relatively big ones. For all size ranges the vertical aerosol number density shows a decreased pattern as the altitude becomes higher. The aerosol number density of $0.3{\sim}0.5{\mu}m$, $0.5{\sim}0.8{\mu}m$, $0.8{\sim}1.2{\mu}m$ size ranges at the 10km height, which is the tropopause approximately, are $1,000,000ea/m^3$, $100,000ea/m^3$, $10,000ea/m^3$ respectively. The data of OPC Sonde are also compared with the data of PM10 $\beta$-ray) and Micro Pulse Lidar which are operating at Korea Global Atmosphere Watch Observatory in Anmyeon.

Development of Semicontinuous Measurement System of Ionic Species in PM2.5

  • Hong, Sang-Bum;Chang, Won-il;Kang, Chang-Hee;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1505-1515
    • /
    • 2009
  • A new method to semicontinuously determine $PM_{2.5}$ ionic species with a short time resolution is described in detail. In this system, a particle collection section (mixing part, particle collection chamber, and air/liquid separator) was developed. A Y-type connector was used to mix steam and an air sample. The particle collection chamber was constructed in the form of a helix coil and was cooled by a water circulation system. Particle size growth occurred due to the high relative humidity and water absorbed particles were efficiently collected in it. Liquid samples were drained out with a short residence time (0.08-0.1 s). The air/liquid separator was also newly designed to operate efficiently when the flow rate of the air sample was 16.7 L $min^{-1}$. For better performance, the system was optimized for particle collection efficiency with various types of test aerosols such as ($NH_4)_2SO_4,\;NaCl,\;NH_4HSO_4,\;and\;NH_4NO_3$. The particle collection efficiencies were almost 100% at different concentration levels in the range over 500 nm in diameter but 50-90% in the range of 50-500 nm under the following experimental conditions: 15 coil turns, a water flow rate for steam generation of 0.65 mL $min^{-1}$, and an air sample flow rate of 16.7 L $min^{-1}$. Finally, for atmospheric applications, chemical compositions of $PM_{2.5}$ were determined with a time resolution of 20 min on January 11-24, 2006 in Seoul, Korea, and the chemical characteristics of $PM_{2.5}$ ions were investigated.

겨울철 광주지역 $PM_{2.5}$의 화학적 특성 조사 (Investigation of Chemical Characteristics of $PM_{2.5}$ during Winter in Gwangju)

  • 고재민;배민석;박승식
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.89-102
    • /
    • 2013
  • 24-hr $PM_{2.5}$ samples were collected from January 19 through February 27, 2009 at an urban site of Gwangju and analyzed to determine the concentrations of organic and elemental carbon(OC and EC), water-soluble OC(WSOC), eight ionic species($Na^+$, $NH^{4+}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), and 22 elemental species. Haze phenomena was observed during approximately 29%(10 times) of the whole sampling period(35 days), resulting in highly elevated concentrations of $PM_{2.5}$ and its chemical components. An Asian dust event was also observed, during which $PM_{2.5}$ concentration was 64.5 ${\mu}g/m^2$. Crustal materials during Asian dust event contributed 26.6% to the $PM_{2.5}$, while lowest contribution(5.1%) was from the haze events. OC/EC and WSOC/OC ratios were found to be higher during haze days than during other sampling days, reflecting an enhanced secondary organic aerosol production under the haze conditions. For an Asian dust event, enhanced concentrations of OC and secondary inorganic components were also found, suggesting the further atmospheric processing of precursor gases during transport of air mass to the sampling site. Correlations among WSOC, EC, ${NO_3}^-$, ${SO_4}^{2-}$, and primary and secondary OC fractions, which were predicted from EC tracer method, suggests that the observed WSOC could be formed from similar formation processes as those of secondary organic aerosol, ${NO_3}^-$ and ${SO_4}^{2-}$. Results from principal component analysis indicate also that the observed WSOC was strongly associated with formation routes of the secondary organic and inorganic aerosols.

에어러솔 대기에서 단파 영역에서의 복사전달모델들의 상호비교 (Intercomparison of Shortwave Radiative Transfer Models for Aerosol-laden Atmospheres)

  • 유정문;정명재;이규태;김준;이주은;허영민;김보미;이윤곤;이재화;윤종민;이원학
    • 한국지구과학회지
    • /
    • 제29권2호
    • /
    • pp.128-139
    • /
    • 2008
  • 본 연구에서는 에어러솔 대기 상태에서 국내 COMS 연구자들이 사용하는 세 개의 단파 복사전달모델에서 산출된 복사속 성분을 비교분석하였으며, 대기 복사 수지에서 에어러솔 역할도 분석하였다. 국내 모델들의 평가를 위하여, 15개 모델값을 평균한 Halthore et al.(2005) 결과를 기준값으로 사용하였다. 두 종류 에어러솔 농도(AOT=0.08, 0.24)에서 조사된 열대 또는 한대 대기의 에어러솔 강제력은 지표에서의 하향 일사 및 상향 산란, 대기 상부의 상향 산란, 그리고 대기 흡수도의 복사 성분들에 있어서 국외 연구에 비하여 국내 결과들에서 체계적으로 약하게 나타났다. 에어러솔 강제력은 지표에서의 하향 일사에 대하여 $-10{\sim}-40Wm^{-2}$ 이었으며, 지표 및 대기 상부의 상향 산란의 경우에 상대적으로 큰 태양천정각과 고농도 에어러솔 상태에서 컸다. 두 종류 에어러솔 조건에서 지표에서의 하향 및 상향 산란값들은 대기 종류보다는 태양천정각에 더 민감하였다. 하향 산란은 상대적으로 작은 태양천정각과 고농도 에어러솔 조건에서 컸다. 에어러솔 농도 증가는 하향 산란 증가에도 불구하고 하향 직달 일사의 감소가 이를 초과함으로써 지표 냉각을 유도하는 것으로 조사되었다. 동일한 에어러솔 농도 및 태양천정각 조건에서 직달일사 소산은 열대 대기에서는 주로 수증기, 그리고 한대 대기에서는 수증기뿐만 아니라 오존에도 기인하는 것으로 조사되었다. 특히 열대 대기에서는 수증기의 역할이 오존에 비하여 $3{\sim}4$배 컸다. 저농도 및 고농도 에어러솔 대기에서 대기 흡수도는 국내외 연구간에 ${\pm}10%$ 내에서 일치하였다.

우리나라에서 AERONET 태양광도계 자료를 이용한 다종위성 AOD 산출물 비교평가: MODIS, VIIRS, Himawari-8, Sentinel-3의 사례연구 (A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3)

  • 김서연;정예민;윤유정;조수빈;강종구;김근아;이양원
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.543-557
    • /
    • 2021
  • 에어로솔은 입자의 크기와 조성 및 관측센서에 따라 상이한 분광특성을 보이기 때문에, 다양한 센서의 에어로솔 산출물에 대한 비교분석이 반드시 필요하다. 그러나, 우리나라에서 다종위성의 공식적인 AOD (Aerosol Optical Depth) 산출물을 대상으로 수년간의 자료를 수집하여 정확도 비교평가를 수행한 사례는 아직 보고된 바가 없다. 이에, 본 연구에서는 2015년 1월부터 2019년 12월까지 MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, Sentinel-3 AOD 산출물과 AERONET (Aerosol Robotic Network) 지상 태양광도계 자료의 비교분석을 통하여 위성 AOD의 성능을 평가하고, 계절적 및 지리적 차이에 따른 정확도 특성을 분석하였다. 오랜 기간 축적되어온 산출 기술에 MAIAC (Multiangle Implementation of Atmospheric Correction) 알고리듬을 추가하여 최적화된 MODIS 산출물이 가장 높은 정확도를 나타냈고(CC=0.836), VIIRS와 Himawari-8이 그보다 약간 낮은 정도의 성능을 보였으며, Sentinel-3는 비교적 최근에 발사되어 알고리듬 최적화가 아직 덜 이루어진 관계로 정확도가 낮게 나타났다. MODIS, VIIRS, Himawari-8 AOD 산출물은 계절에 따라, 그리고 도시/비도시에 따라 별다른 정확도 차이를 보이지는 않았지만, 일부 해안지역에서는 혼합화소 문제로 인하여 약간 정확도가 떨어지는 경우도 존재했다. AOD는 위성영상 대기보정의 핵심 인자이기 때문에, 본 연구의 AOD 비교평가는 향후 국토위성, 농림위성 등의 대기보정 연구에도 중요한 참고자료가 될 것으로 사료된다.

Comparison of Chemical Composition of Particulate Matter Emitted from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

  • Lee, Jong Tae;Son, Jihwan;Kim, Jounghwa;Choi, Yongjoo;Yoo, Heung-Min;Kim, Ki Joon;Kim, Jeong Soo;Park, Sung Wook;Park, Gyutae;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 2016
  • Particulate matter (PM) in the atmosphere has wide-ranging health, environmental, and climate effects, many of which are attributed to fine-mode secondary organic aerosols. PM concentrations are significantly enhanced by primary particle emissions from traffic sources. Recently, in order to reduce $CO_2$ and increase fuel economy, gasoline direct injected (GDI) engine technology is increasingly used in vehicle manufactures. The popularization of GDI technique has resulted in increasing of concerns on environmental protection. In order to better understand variations in chemical composition of particulate matter from emissions of GDI vehicle versus a port fuel injected (PFI) vehicle, a high time resolution chemical composition of PM emissions from GDI and PFI vehicles was measured at facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Continuous measurements of inorganic and organic species in PM were conducted using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The HR-ToF-AMS provides insight into non-refractory PM composition, including concentrations of nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol, and organic mass with 20 sec time resolution. Many cases of PM emissions during the study were dominated by organic and nitrate aerosol. An overview of observed PM characteristics will be provided along with an analysis of comparison of GDI vehicle versus PFI vehicle in PM emission rates and oxidation states.

선택적다중이온질량분석기를 이용한 대기 중 휘발성유기화합물 실시간 동시분석법 개발 및 적용 (Development of Real-time and Simultaneous Quantification of Volatile Organic Compounds in Ambient with SIFT-MS (Selected Ion Flow Tube-Mass Spectrometry))

  • 손현동;안준건;하성용;김기범;임운혁
    • 한국대기환경학회지
    • /
    • 제34권3호
    • /
    • pp.393-405
    • /
    • 2018
  • Volatile organic compounds (VOCs) are representative air pollutants due to their detrimental effects on human health and their role in formation of secondary organic aerosols. Assessments and monitoring programs of VOCs using periodic grab sampling like Tedlar bags, canisters, and sorbent traps provide limited information, often with delay times of days or weeks. Selected ion flow tube mass spectrometry (SIFT-MS) is an emerging analytical technique for the real-time quantification of VOCs in air. It relies on chemical ionization of the VOCs molecules in air introduced into helium carrier gas using $H_3O^+$, $NO^+$, and $O_2{^+}$ precursor ions. Real-time monitoring method of 60 VOCs in the ambient air was developed using TO-15 standard gas mixture. Calibration curves, method detection limit, and quantitation reproducibility of the target compounds were tested. Dynamic dilution system was used to dilute standard gas from 0.174 ppbv to 100 ppbv, where calibration curves showed good linearity with $r^2$> 0.95 in all target analytes. Limit of detection (LOD) all compounds were sub ppbv, and some halogenated compounds showed pptv levels. Seven consecutive analyses of target compounds showed good repeatability with relative standard deviation of less than 10%. One day monitoring of VOCs in ambient air was conducted in Geoje. Average concentration of target VOCs in Geoje were relatively lower than other regions, among which formaldehyde showed the highest concentration ($15.4{\pm}5.78ppbv$). SIFT-MS provided good temporal resolution data (1 data per 3.2 minute), which can be used for identifying ephemeral short-term event. It is expected that SIFT-MS will be a versatile monitoring platform for VOCs in ambient air.

한반도 서부유입권역에서 대기 중 에어로졸 성분의 화학적 특성 연구 II. 입자의 산성도 및 산화 특성 (A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula II. Characteristics of Inorganic Aerosol Acidity and Organic Aerosol Oxidation)

  • 최진수;김정호;이태형;최용주;박태현;안준영;박진수;김현재;구윤서;김신도;홍유덕;홍지형
    • 한국대기환경학회지
    • /
    • 제32권5호
    • /
    • pp.485-500
    • /
    • 2016
  • We examined acidity state of inorganic aerosol and oxidation state of organic aerosol by High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Baengnyeong Super site from Jan 2012 to Dec 2013. Additionally, we carried out the analysis for the aerosol component group of organic matter ($C_xH_y$, $C_xH_yO_1$, $C_xH_yO_z$, $C_xH_yO_zN_p$) and elemental composition to calculate H/C, O/C, N/C, OM/OC and identify the oxidation state. The aerosol chemical composition in this study is dominated by sulfate ($SO_4{^{2-}}$), nitrate ($NO_3{^-}$) plays a smaller role in aerosol acidity. Ammonium ($NH_4{^+}$) was found in a formation of $(NH_4)_3H(SO_4)_2$. However, the binding formations of $NH_4NO_3$ and $NH_4Cl$ increase in the winter. $C_xH_yO_1$ indicating the oxidized state of $PM_{1.0}$ has the highest ratio of 41% while $C_xH_y$ indicating the non-oxidized state has a lower ratio of 36%, meaning that the oxidation level of $PM_{1.0}$ in Baengnyeong Island is high. The ratio between H/C and O/C was 1.33 and 0.78 respectively, showing the characteristic of LV-OOA (Low volatility-Oxygenated Organic Aerosol). Acidic and oxidized aerosols sampled during this field study were largely anthropogenic in origin from Chinese continent and photochemically aged.

PM2.5 자동측정장비 비교 및 정도관리 방안 (Comparison of the Real-time Measurements for PM2.5 and Quality Control Method)

  • 박미경;박진수;조미라;이용환;김현재;오준;최진수;안준영;홍유덕
    • 한국대기환경학회지
    • /
    • 제33권6호
    • /
    • pp.616-625
    • /
    • 2017
  • Measurements using five real-time particle samplers were compared to measurements using three NRM (National Reference Method system) filter-based samplers(Gravimetric method) at Incheon, Korea, between May and August, 2014. The purpose of this study was to suggest the quality assurance/quality control (QA/QC) method of each instrument for use in a real-time continuous particle sampler to measure the mass of airborne particles with an aerodynamic diameter less than $2.5{\mu}m$ ($PM_{2.5}$). Five real-time particle samplers of BAM1020, FH62C_14, TEOM, PM-711 and SPM-613 were evaluated by comparing its measured 23 hr average $PM_{2.5}$ concentrations with those measured with NRM filter-based samplers simultaneously. The parameters(e.g. Inlet heating condition, Slope factor, Film response, Intercept, Background, Span value) of the real-time samplers were optimized respectively by conducting test performance evaluation during 7 days in field sampling. For example, inlet heating temperature of TEOM sampler controls $35{\sim}40^{\circ}C$ to minimize the fluctuation of the real-time measurement data and background value of BAM1020 is the key factor affecting the accuracy of $PM_{2.5}$ mass concentration. We classified the $PM_{2.5}$ concentration according to relative humidity (80%) to identify water absorbed in aerosols by measuring the ${\beta}$-ray samplers(BAM1020, FH62C_14) and TEOM. ${\beta}$-ray samplers were not strongly affected by relative humidity that the difference of the average $PM_{2.5}$ concentration was about 5%. On the other hand, The TEOM sampler overestimated $PM_{2.5}$ mass concentration about 15% at low relative humidity (<80%).