• Title/Summary/Keyword: Atmospheric aerosols

Search Result 380, Processing Time 0.027 seconds

A Weekend Effect in Diurnal Temperature Range and its Association with Aerosols in Seoul (서울의 일교차 주말효과와 에어러솔과의 연관성)

  • Kim, Byung-Gon;Kim, Yoo-Jun;Eun, Seung-Hee;Choi, Min-Hyuck
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2007
  • A weekend effect has been investigated in diurnal temperature range (DTR) for Seoul in Korea using 50-year (1955 ~ 2005) surface measurements of maximum and minimum temperatures, and particle mass concentrations (PM10). The minimum temperature increases by 0.42K per decade, 2 times faster than the maximum temperature during 1955 to 2005, for rapid urbanization has occurred in Seoul. The weekend effect, which is defined as the DTR for Sunday minus the average DTR for Tuseday through Thursday, can be as large as +0.08 K for the recent 20-year period relative to 0.01K for 1955 to 1975. Especially the wintertime DTR tends to have a remarkable positive weekend effect (+0.17K), that is, larger DTR on Sunday compared to weekdays, which seems to be associated with increased maximum temperature and thus an increase in DTR. This result could be explained by relative differences in PM10 concentration between Sunday and weekdays (Tuesday through Thursday), such that PM10 concentration on Sundays appears to be systematically lower about 12% than on weekdays. The annually average weekend DTR increases by 0.2K with $10{\mu}gm^{-3}$ decrease in PM10 concentration in comparison with weekdays. The results could be possible evidence of an anthropogenic link to DTR, one of climate important indicators, since no meteorological phenomenon is supposed to occur over a 7 day cycle.

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

Identification of Long-Range Transported Air Pollution Indicators over Northeast Asia (동북아시아 대기오염물질의 장거리 이동 지시자 선정 연구)

  • Park, Sin-Young;Kim, Cheol-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • This study has been performed to select several indicators of long-range transport process that can be applied to the Northeast Asia. We first classified high air pollution days into long-range transport (LRT) dominant cases and the local emission dominant (LED) cases based on the synoptic meteorological variables including vorticity and geostrophic wind speed/direction at a geopotential level of 850 hPa. LRT cases were further categorized into two types: LRT-I type with air mass pathways from northern China and/or Mongolia, and LRT-II type from central and southern China. In each categorized case, we examined the difference of both measured aerosol optical properties of AERONET at two sites in western Korea, and the simulated characteristics of LRT process by MM5-CMAQ model. We contrasted LRT case with LED case, and then generated the LRT indicators applicable to Northeast Asia. The results showed that fine and coarse modes of LRT-II were relatively smaller than LED and LRT-I cases, respectively. Aerosol size distribution showed significantly higher concentration of fine-mode particle (mainly smoke or urban aerosols) in LED case in comparison with that of LRT groups (LRT-I, II), suggesting the amplitudes fine modes of LRT relative to LED as a possible LRT indicator. From the results of MM5-CMAQ modeling, we concluded that the conversion ratios for sulfur ($F_s$) were the most effective indicators of LRT cases, and the ratio of VOC to NOx and NOx to CO were found to be the second most effective indicators of LED case.

Visibility Measurement in an Atmospheric Environment Simulation Chamber

  • Tai, Hongda;Zhuang, Zibo;Jiang, Lihui;Sun, Dongsong
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.186-195
    • /
    • 2017
  • Obtaining accurate visibility measurements is a common atmospheric optical problem, and of vital significance to civil aviation. To effectively evaluate and improve the accuracy of visibility measurements, an outdoor atmospheric simulation chamber with dimensions of $1.8{\times}1.6{\times}55.7m^3$ was constructed. The simulation chamber could provide a relatively homogeneous haze environment, in which the visibility varied from 10 km to 0.2 km over 5 hours. A baseline-changing visibility measurement system was constructed in the chamber. A mobile platform (receiver) was moved from 5 m to 45 m, stopping every 5 m, to measure and record the transmittance. The total least-squares method was used to fit the extinction coefficient. During the experiment conducted in the chamber, the unit weight variance was as low as $1.33{\times}10^{-4}$ under high-visibility conditions, and the coefficient of determination ($R^2$) was as high as 0.99 under low-visibility conditions, indicating high stability and accuracy of the system used to measure the extinction coefficients and strong consistency between repeated measurements. A Grimm portable aerosol spectrometer (PAS) was used to record the aerosol distribution, and then Mie theory was used to calculate the extinction coefficients. The theoretical results were found to be consistent with the measurements and exhibited a positive correlation, although they were higher than the measured values.

The Kwinana Shoreline Fumigation Experiment in Western Australia, Australia

  • Yoon, I.H.;Sawford, B.L;Manins, P.C.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1996.04a
    • /
    • pp.22-22
    • /
    • 1996
  • ;The Kwinana Shoreline Fumigation Experiment(KSFE) took place in Fremantle, WA, Australia between 23 January and 8 February, 1995. All measurement systems performed to expectation. The CSIRO DAR(Division of Atmospheric Research) LIDAR measured plume sections from near the Kwinana Power Station(KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. Radiosonde and double theodolite sounding systems measured temperature, humidity, air pressure and wind structure at the coast(Woodman Point) and at the inland(ALCOA residue dump) site at intervals of roughly two hours. These were supplemented by mid afternoon soundings(radiosonde and single theodolite) by Department of Environmental Protection(DEP) at Swanbourne. The Flinders aircraft measured wind, turbulence and temperature structure of the atmospheric boundary layer, concentrations of $C0_2,\;0_3,\;S0_2\;and\;NO_x$ in the smoke plumes and surface radiation over both land and sea. CSIRO DCET(Division of Coal and Energy Technology) vehicle successfully interceptde many smoke plumes and using a range of tracers will be able to identify the various sources much of the time. Routine data from the DEP and Kwinana Industrial Council(KIC) air quality monitoring networks were also automatically logged. Murdoch University measured surface heat flux at Hope Valldy monitoring station and also at Wattleup monitoring station for the last five days. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminumgarnet(Nd:Y AG) laser operating at a fundamental wavelength of 1064 nm, with harmonics fo 532 nm and 355 nm. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detedted by a photomultiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The results of nine days special field observations are summarized in detail.etail.

  • PDF

Atmospheric and BRDF Correction Method for Geostationary Ocean Color Imagery (GOCI) (정지궤도 해색탑재체(GOCI) 자료를 위한 대기 및 BRDF 보정 연구)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Palanisamy, Shanmugam;Deschamps, Pierre-Yves;Lee, Zhong-Ping
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • A new correction method is required for the Geostationary Ocean Color Imager (GOCI), which is the world's first ocean color observing sensor in geostationary orbit. In this paper we introduce a new method of atmospheric and the Bidirectional Reflectance Distribution Function(BRDF) correction for GOCI. The Spectral Shape Matching Method(SSMM) and the Sun Glint Correction Algorithm(SGCA) were developed for atmospheric correction, and BRDF correction was improved using Inherent Optical Property(IOP) data. Each method was applied to the Sea-Viewing Wide Field-of-view Sensor(SeaWiFS) images obtained in the Korean sea area. More accurate estimates of chlorophyll concentrations could be possible in the turbid coastal waters as well as areas severely affected by aerosols.

Aerosol Density Determined Using Micro-orifice Uniform Deposit Impactor and Aerosol Dust Monitors Data at Seoul (다단입자채집기와 입자계수기 자료를 이용한 서울 에어러솔 밀도 계산)

  • Kim, Jeong-Eun;Lee, Hae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.298-304
    • /
    • 2010
  • In order to calculate the aerosol bulk densities of $PM_{1.0}$ and $PM_{10}$, aerosol mass and number concentrations were measured for the period of December 2008~April 2009. $PM_{1.0}$ and $PM_{10}$ mass concentrations were measured using a cascade impactor (Micro-Orifice Uniform Deposit Impactor, MOUDI) while their volume concentrations were calculated based on number concentrations from an environmental dust monitor (EDM). Normal aerosol size distribution fitting functions were retrieved for number size distribution since aerosols < $2.5{\mu}m$ were measured from the EDM. Strong correlation was found between $PM_{1.0}$ mass and volume concentrations obtained with a $R^2$ of 0.95. The calculated average bulk densities of $PM_{1.0}$ and $PM_{10}$ were $1.97{\pm}0.33g/cm^3$ and $2.15{\pm}0.18g/cm^3$, respectively.

Estimation of Vertical Profiles and Total Amount of Ozone Using Two-Dimensional Photochemical Transfer Model During the Period of 1995-1996 at Pohang (2차원 광화학수송모델을 이용한 포항지역의 1995-1996년 기간동안 오존의 연직 프로파일 및 전량 추정)

  • Moon, Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.271-285
    • /
    • 2006
  • A two-dimensional photochemical transport model (2D PTM) is simulated to describe the transport and chemical reaction of ozone related to aerosols in the troposphere and stratosphere. The vertical profiles and total amounts of ozone, which are advected by both residual Eulerian circulation and the adiabatic circulation under certain circumstance, have been compared with the observation data such as ozonesondes, Brewer spectrometer, the Upper Atmosphere Research Satellite (UARS), and the Total Ozone Mapping Spectrophotometer (TOMS). As a result, we find that the observed distribution of ozone Is adequately reproduced in the model at middle and high latitude in the Northern Hemisphere as well as at Phang ($36^{\circ}\;02'N,\;129^{\circ}\;23'E$) in South Korea. In particular, the 2D PTM is well simulated in the ozone decrease due to the Pinatubo volcanic eruption in 1991. However, ozone mixing ratio are more underestimated than those of UARS and ozonesondes, because are very sensitive to the latitude of transport across the tropopause associated with both Rummukainen errors and off-line model. Relative mean bias errors and relative root mean square errors of ozone calculations using the 2D PTM are shown within${\pm}10%$, respectively.

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

Chemical Characterization of Water-Soluble Organic Acids in Size-Segregated Particles at a Suburban Site in Saitama, Japan

  • Bao, Linfa;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2009
  • Saturated n-dicarboxylic acids ($C_2-C_7$, $C_9$), unsaturated dicarboxylic acids (maleic, fumaric, phthalic acid), ketocarboxylic acids (pyruvic, glyoxylic acid), and dicarbonyls (glyoxal, methylglyoxal) were determined in size-segregated samples with a high-volume Andersen air sampler at a suburban site in Saitama, Japan, May 12-17 and July 24-27, 2007 and January 22-31, 2008. The seasonal average concentrations of these detected organic acids were 670 $ng/m^3$, accounting for about 4.4-5.7% (C/C) of water-soluble organic carbon (WSOC) and 2.3-3.6% (C/C) of organic carbon (OC). The most abundant species of dicarboxylic acids was oxalic acid, followed by malonic, phthalic, or succinic acids. Glyoxylic acid and methyglyoxal were most abundant ketocarboxylic acid and dicarbonyl, respectively. Seasonal differences, size-segregated concentrations, and the correlations of these acids with ambient temperatures, oxidants, elemental carbon (EC), OC, WSOC, and ionic components were also discussed in terms of their corresponding sources and possible secondary formation pathways. The results suggested that photochemical reactions contributed more to the formation of particulate organic acids in Saitama suburban areas than did direct emissions from anthropogenic and natural sources. However, direct emissions of vehicles were also important sources of several organic acids in particles, such as phthalic and adipic acids, especially in winter.