• Title/Summary/Keyword: Atmosphere Gas

Search Result 1,120, Processing Time 0.031 seconds

Atmospheric Sulfur Hexafluoride $(SF_6)$ near the Kwanak Mountain, Seoul (서울 관악산 대기 중의 $SF_6$에 관한 연구)

  • Lee, Junghyun;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.225-235
    • /
    • 2008
  • Sulfur hexafluoride ($SF_6$), man-made compound, has been paid attention as a potent greenhouse gas. After Kyoto Pototcol on Climate Change in 1997, nations established the policy aimed at minimizing release of $SF_6$ to atmosphere. We have developed and operated an automatic analytical system for monitoring atmospheric $SF_6$ using gas chromatography with electron capture detector (GC-ECD) and packed separate-column. Here, we report and discuss 4-month record of atmospheric $SF_6$ concentrations monitored at Seoul National University (SNU) pilot station near the Kwanak Mountain, Seoul. Most of observed $SF_6$ concentrations were excessively high compared with Northern Hemisphere (NH) background trend obtained from National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) monitoring stations. And the observed $SF_6$ showed extremely wide variability ranging from 4.6 pptv to $1.1{\times}10^3$ pptv, which may be affected by local sources placed nearby. Simultaneous wind data with $SF_6$ measurements show that relatively high values of $SF_6$ correspond to weak wind as well as southerly. There are many engineering installations to the south of the station. The regional value of the atmospheric $SF_6$ estimated from the data selection by wind conditions is about 6.8 pptv. This value, which is similar to concentrations of urban areas, is higher than NH background concentration.

Model development to design modified atmosphere packaging of Mandarin oranges

  • Kim, Jong-Kyoung;Lee, Sang-Duk;Ha, Young-Sun;Lee, Jun-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.192.1-192
    • /
    • 2003
  • The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for Mandarin oranges. Respiratory data at 5, 10, 20$^{\circ}C$ for mandarin oranges were gathered and altered for create useful respiration model. The maximum rate of oxygen uptake increased with increasing temperature. The packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was 30 $\mu\textrm{m}$ and 50 $\mu\textrm{m}$. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. It is concluded that the strategy developed is of use in designing dynamic gas exchange MAP systems, and also has potential uses in similar agricultural products.

  • PDF

A Study on the Removal Reaction Characteristics of Sulfur Dioxide (대기오염 물질인 $SO_2$ 제거반응 특성 연구)

  • 강순국;정명규
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.41-52
    • /
    • 1995
  • The effects of reaction temperature, SO2 and CO2 concentration in an air gas stream, particle sizes of limestone on the reactivity and capacity of SO2 removal have been determined in a thermogravimetric analyser(TGA). The apparent reaction order of sulfation reaction of pre-calcined lime(CaO) with respect to SO2 is found to be close to unity. The apparent activation energies are found to be 17,000 kcal/kmol for sulfation of pre-calcined lime and 19,500 kcal/kmol for direct sulfation of limestone(CaCO3). The initial sulfation reaction rate of pre-calcined lime increases with increasing temperature, whereas the sulfur capture capacity exhibits a maximum value at 90$0^{\circ}C$. In direct sulfation of limestone, sulfation reactivity and sulfur capature capacity of sorbent increase with increasing temperature and decreasing CO2 concentration in a gas bulk stream. The main pare of pre-calcined lime is shifted to the larger pore sizes and pore volume decreases with increasing sulfation time and temperature. The surface area of lime decreases with increasing calcination temperature under an air atmosphere, whereas is yearly constant under a CO2(5, 10%) atmosphere in a gas stream.

  • PDF

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

Analysis of Quality and Color Properties according to the Gas Composition (Modified Atmosphere Packaging) of Pork Sous-Vide Ham Preserved in Natural Brine

  • Sol-Hee Lee;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.580-593
    • /
    • 2023
  • The purpose of this study was to analyze whether seawater has positive effects on appearance characteristics, such as CIE a*, and to determine the gas composition concentration that is suitable for maintaining it. Pork hind meat was cured with four types of curing agent for 5 d at 4℃. The different curing agents comprised the control salt, control nitrite pickling salt (CN), treatment brine, and treatment bittern (BT). The cured hams were cooked at 65℃ for 4 h and packaged at O2:N2 gas ratios of 7:3, 8:2, and 9:1 for 3 wk. The physicochemical properties were assessed immediately after heating the sample, and the color properties were measured after a 3 wk storage period. Based on the correlation results of the physicochemical properties, BT had a higher curing and cooking yield than the other treatments, owing to its high salinity. Results of color properties for BT (7:3) and CN (8:2) showed similar color CIE L*, CIE a* chroma, and hue angle values. Therefore, BT can be said to be a sous-vide curing agent suitable for preserving the color of ham, and a high nitrogen concentration of 30% helps to maintain the appearance of seawater sous-vide ham.

Antioxidant Packaging as Additional Measure to Augment CO2-enriched Modified Atmosphere Packaging for Preserving Infant Formula Powder

  • Jo, Min Gyeong;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.1
    • /
    • pp.19-23
    • /
    • 2020
  • Al-laminated packaging film incorporating ascorbic acid or tocopherol at inner food contact layer was tested in the potential to improve antioxidative preservation of powdered infant formula under CO2-enriched atmosphere. Product of 200 g was packaged with the packaging film containing 0.3% antioxidant in sealant layer of low density polyethylene and stored at 30℃ for 286 days with periodic measurement of package atmosphere and product's quality attributes. The CO2-flushed package resulted in shrinkage of tight contact between the product and the film not allowing gas sampling of package atmosphere after 140 days. Package of tocopherol-incorporated film allowed some ingress of oxygen after 112 days presumably due to its weakening of heat-seal area. The increased oxygen concentration in the tocopherol-added film package led to the concomitant increase of peroxide value, an index of lipid oxidation. On the other hand, packaging of ascorbic acid-added film pouch could suppress lipid oxidation marginally in consistent manner compared to control package without any antioxidant.

Computer Modeling of Modified Atmosphere Packaging of Peaches (복숭아의 환경기체조절포장을 위한 컴퓨터 모델링)

  • Kim, Jong-Kyoung;Ha, Young-Sun;Lee, Jun-Ho;Lee, Sang-Duk;Kim, Jae-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.9 no.1
    • /
    • pp.33-54
    • /
    • 2003
  • The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for peaches. Respiratory data at 5, 10, $20^{\circ}C$ for peaches were gathered and altered for create useful respiration model. Packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was $30{\mu}m$ and $50{\mu}m$ each. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. The maximum rate of oxygen uptake increased with increasing temperature. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The results of tests were used to calculate Cameron's model and converted to a cubic estimation equation. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. This result of study may be useful for designing dynamic gas exchange MAP systems for similar agricultural products.

  • PDF

Modified Atmosphere Packaging of Fresh-cut Onion (최소가공 절단 양파의 MA 포장)

  • Kim, Eun-Mi;Kim, Nam-Yong;An, Duck-Soon;Shin, Yong-Jae;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.2
    • /
    • pp.39-42
    • /
    • 2011
  • The aim of this study was to develop the appropriate packaging method for minimally processed sliced onions. The films of different gas permeabilities (LDPE $30{\mu}m$, PD900 and PD941) were used for packaging 1300g of onion slices cut into octuplicate pieces. Perforated LDPE package was prepared as control for comparison. The package atmosphere and onion quality were measured through storage at $1^{\circ}C$ for 38 days. PD900 package of the lowest gas permeability was the best in keeping the fresh-cut onions by maintaining MA conditions of 1-3% $O_2$ and 4-11% $CO_2$ concentrations. The benefits were reduced discoloration, decay and soakness.

  • PDF

The Analysis of Wear Phenomena on Added Carbon Content Gas Atmosphere in Ion-Nitriding (이온질화에 있어서 가스중 첨가탄소량에 대한 마모현상 분석)

  • 조규식
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.96-104
    • /
    • 1997
  • This paper was focused on the wear characteristics of ion-nitrided metal and with ion-nitride processing, which is basically concerned with the effects of carbon content in workpiece and added carbon content gas atmosphere on the best wear performance. Increased carbon content in workpiece increases compound layer thickness, but decreases diffusion layer thickness. On the other hand, a small optimal amount of carbon content in gas atmosphere increase compound layer thickness as well as diffusion layer thickness and hardness. Wear tests show that the compound layer of ion-nitrided metal reduces wear rate when the applied wear load is small. However, as the load becomes large, the existence of compound layer tends to increase wear rate. Compressive residual stress at the compound layer is the largest at the compound layer, and decreases as the depth from the surface increases. It is found in the analysis that under small applied load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the adhesive wear is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below the compound layer and delamination, which may explained by surface deformation, crack nucleation and propagation, is created and the existence of compound layer increases wear rate. For the compound layer, at added carbon contents of 0 percent and 0.5 at. percent, the $\varepsilon$ monophase is predominant. But at 0.7 at. percent added carbon, the $\varepsilon$ monophase formation tends to be severely inhibited and r' and $Fe_3C$ polyphase formation becomes dominant. This increased hard $\varepsilon$ phase layer was observed to be more beneficial in reducing friction and wear.