• Title/Summary/Keyword: AtDGAT1

Search Result 6, Processing Time 0.028 seconds

Efficiency for increasing seed oil content using WRINKLED1 and DGAT1 under the control of two seed-specific promoters, FAE1 and Napin

  • Kim, Hyojin;Kim, Hyun Uk;Suh, Mi Chung
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.242-252
    • /
    • 2012
  • Seed storage oils are essential resources for not only human and animal diets but also industrial applications. The primary goal of this study was to increase seed oil content through comparative analysis of two seed-specific promoters, AtFAE1 from Arabidopsis Fatty Acid Elongase 1 gene and BnNapin from Brassica napus seed storage protein gene. AtWRI1 and AtDGAT1 genes encoding an AP2-type transcription factor and a Diacylglycerol Acyltransferase 1 enzyme, respectively, were expressed under the control of AtFAE1 and BnNapin promoters in Arabidopsis. The total seed oil content in all transgenic plants was increased by 8-11% compared with wild-type seeds. The increased level of oil content in AtWRI1 and AtDGAT1 transgenic lines under the control of both promoters was similar, although the activity of the BnNapin promoter is much stronger than that of AtFAE1 promoter in the mature stage of developing seeds where storage oil biosynthesis occurs at a maximum rate. This result demonstrates that the AtFAE1 promoter as well as the BnNapin promoter can be used to increase the seed oil content in transgenic plants.

Association between Single Nucleotide Polymorphisms in the Dgat2 Gene and Beef Carcass and Quality Traits in Commercial Feedlot Steers

  • Li, J.;Xu, X.;Zhang, Q.;Wang, X.;Deng, G.;Fang, X.;Gao, X.;Ren, H.;Xu, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.943-954
    • /
    • 2009
  • Diacylglycerol acyltransferase (DGAT) is a key enzyme that catalyzes the final and rate-limiting step of triglyceride synthesis. Both DGAT1 and DGAT2 genes code proteins with DGAT activity. Studies have shown DGAT1 polymorphisms associate with intramuscular fat deposition in beef cattle, but fewer associations between DGAT2 and beef cattle economic traits have been reported. The objective of this study was to investigate single nucleotide polymorphism (SNP) in intron3 of bovine DGAT2 and evaluate the associations of that with carcass, meat quality, and fat yield traits. Test animals were 157 commercial feedlot steers belonging to 3 Chinese native breeds (22 for Luxi, 24 for Jinnan, and 23 for Qinchuan), 3 cross populations (20 for Charolais${\times}$Fuzhou, 18 for Limousin ${\times}$Luxi, and 17 for Simmental${\times}$Jinan) and 1 Taurus pure breed population (16 Angus steers). In the current study, 15 SNP were discovered in intron3 and exon4 of DGAT2 at positions 65, 128, 178, 210, 241, 255, 270, 312, 328, 334, 365, 366, 371, 415, and 437 (named as their positions in PCR amplified fragments). Only 7 of them (128, 178, 241, 270, 312, 328, and 371) were analyzed, because SNP in three groups (65-128-255, 178-210-365 and 241-334-366) were in complete linkage disequilibrium within the group, and SNP 415 was a deletion and 437 was a null mutation. Frequencies for rare alleles in the 3 native breed populations were higher than in the 3 cross populations for 178 (p = 0.04), 270 (p = 0.001), 312 (p = 0.03) and 371 (p = 0.002). A general linear model was used to evaluate the associations between either SNP genotypes or allele substitutions and the measured traits. Results showed that SNP 270 had a significant association with the fat yield associated with kidney, pelvic cavity, heart, intestine, and stomach (KPHISY). Animals with genotype CC and CT for 270 had less (CC: -7.71${\pm}$3.3 kg and CT: -5.34${\pm}$2.5 kg) KPHISY than animals with genotype TT (p = 0.02). Allele C for 270 was associated with an increase of -4.26${\pm}$1.52 kg KPHISY (p = 0.006) and $-0.92{\pm}0.45%$ of retail cuts weight percentage (NMP, Retail cuts weight/slaughter body weight) (p = 0.045); allele G for 312 was associated with an increase of -5.45${\pm}$2.41 kg KPHISY (p = 0.026). An initial conclusion was that associations do exist between DGAT2 gene and carcass fat traits. Because of the small sample size of this study, it is proposed that further effort is required to validate these findings in larger populations.

Association of Sequence Variations in DGAT 1 Gene with Economic Traits in Hanwoo (Korea Cattle)

  • Kong, H.S.;Oh, J.D.;Lee, J.H.;Yoon, D.H.;Choi, Y.H.;Cho, B.W.;Lee, H.K.;Jeon, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.817-820
    • /
    • 2007
  • The effects of diacylglycerol O-acyltransferase (DGAT1) candidate gene polymorphism on the economic traits of Hanwoo were studied. Through sequencing analysis, two polymorphism sites at K232A and T11993C were established and were analyzed by PCR-RFLP. The PCR-RFLP analysis for K232A showed that the frequencies of alleles K and A were 0.75 and 0.25, respectively, and the frequencies of genotypes for K/K, K/A and A/A were estimated as 0.509, 0.491 and 0, respectively. In the PCR-RFLP analysis for T11993C, we found allele frequencies of 0.773 and 0.227 for T and A, respectively, and 0.546, 0.454 and 0 for the T/T, T/C and C/C genotype frequencies, respectively. No significant effects on economic traits in Hanwoo were found in the separate analysis of K232A and T11993C polymorphisms, but the interaction between K232A and T11993C showed a significant effect (p<0.005) on marbling score. The DGAT1 candidate gene was found to have a significant effect not only on milk yield and component traits but also on the metabolism of intramuscular fat.

Glycerides from the Aerial Parts of Garland (Chrysanthemum coronarium L.) and Their Inhibitory Effects on ACAT, DGAT, FPTase, and $\beta$-Secretase

  • Song, Myoung-Chong;Yang, Hye-Joung;Cho, Jin-Gyeong;Chung, In-Sik;Kwon, Byoung-Mog;Kim, Dae-Keun;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • The aerial parts of garland (Chrysanthemum coronarium L.) were extracted in 80% aqueous methanol (MeOH) and the concentrated extract was then partitioned using ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. EtOAc and n-BuOH fractions resulted in 4 glycerides with the application of octadecyl silica gel and silica gel column chromatography. The chemical structures of the glycerides were determined using several spectroscopic methods, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) as (2S)-1-O-palmitoyl-sn-glycerol (1), (2S)-1-O-oleoyl-2-O-oleoyl- 3-O-$\beta$-D-galactopyranosyl-sn-glycerol (2), (2S)-1-O-palmitoyl-2-O-linoleoyl-3-O-phosphorouscholine-sn-glycerol (3), and (2S)-1-O-linolenoyl-2-O-palmitoyl-3-O-[$\alpha$-D-galactopyrasyl-($1{\rightarrow}6$)-$\beta$-D-galactopyranosyl]-sn-glycerol (4). The free fatty acids of these glycerides were determined with gas chromatography (GC)-MS analysis following alkaline hydrolysis and methylation. These glycerides demonstrated an inhibitory effect on acyl-CoA: cholesterol acyltransferase (ACAT, compound 1: $45.6{\pm}0.2%$ at $100{\mu}g/mL$), diacylglycerol acyltransferase (DGAT, compound 1: $59.1{\pm}0.1%$ at $25{\mu}g/mL$), farnesyl protein transferase (FPTase, compound 2: $98.0{\pm}0.1%$; compound 3: $55.2{\pm}0.1%$ at $100{\mu}g/mL$), and $\beta$-secretase ($IC_{50}$, compound 4: $2.6{\mu}g/mL$) activity. This paper is the first report on the isolation of these glycerides from garland and their inhibitory activity on ACAT, DGAT, FPTase, and $\beta$-secretase.

Study on hydroxy fatty acid contents changes and physiological responses under abiotic stresses in transgenic Camelina

  • Kim, Hyun-Sung;Lee, Hyun-Sook;Lim, Hyun-Gyu;Park, Won;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.191-191
    • /
    • 2017
  • Hydroxy fatty acid (HFA) is an important industrial resource that known to be extracted from seeds of Castor or Lesquerella. However, mass production of HFA from those crops are difficult because of their behavior or life cycle. In this study, we applied HFA synthesis related gene FAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT on bioenergy crop Camelina sativa. Furthermore, we determined NaCl or cold stress tolerance changes of transgenic Camelina. RcFAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT genes were cloned into multigene expression vector which is engineered with seed specific promoter of FAE1 or Napin. Combination of HFA genes multi-expression vector constructs were divided into Set3 (RcFAH12, RcPDAT1-2, RcLPCAT), Set4 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT), and Set5 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT, RcPDCT). Transgenic HFA synthesis Camelina plants were generated using agrobacterium-mediated vacuum infiltration system. Results of fatty acid composition of T1 transgenic Camelina seeds analyzed by GC-MS showed 9.5, 9.0, and 13.6 % of HFA contents in Set3#6, Set4#8, and Set5#10, respectively. Therefore, seeds of T2 generation were harvest from Set5#10 which is shown highest HFA contents, and, 17.7, 8.1 and 10.5 % of HFA contents were determined in Set5#10-5, Set5#10-8, and Set#10-10, respectively. However, 7.7% of C18:2 and 22.3 % of C18:3 among unsaturated fatty acids were decreased in Set5#10-5 than WT. Meanwhile, we confirmed abiotic stress responses in T2 transgenic Camelina Set5#10-5 and Set5#10-10 under 0, 100, 150, and 200 mM NaCl or 25, 15, and $10^{\circ}C$ temperature for 5 weeks. Both Set5#10-5 and Set5#10-10 showed lower growth in height than WT in control and NaCl condition. Growth of leaf length and width were similar in WT and Set5#10-10 but lower in Set5#10-5 under NaCl stress. Number of opened flowers showed that both transgenic Camelina were lower than WT under normal condition. But, WT and Set5#10-10 showed similar opened flower number in 100 and 200 mM NaCl. In cold stress, 15 and $10^{\circ}C$ treatment for 5 weeks did not showed significant changes in between WT and both transgenic lines even they showed different growth rate in control condition. Taken together, growth and development are delayed by expression of exogenous HFA related genes in transgenic lines but relative abiotic stress sensitivity is similar with WT. In conclusion, reduced C18:2 or C18:3 fatty acid composition of seed by HFA synthesis is resulted from lack of resource supplement for development at seedling stage but it is not affect NaCl and cold stress tolerance.

  • PDF

Production of vegetable oil in biomass (바이오매스에서 식물지방 생산)

  • Kim, Hyun Uk;Lee, Kyeong-Ryeol;Kim, Eun-Ha;Roh, Kyung Hee;Kang, Han Chul;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.107-115
    • /
    • 2014
  • Vegetable oils (triacylglycerols) produced mainly in seeds of plants are used for valuable foods that supply essential fatty acids for humans as well as industrial raw materials and biofuel production. As the demanding for vegetable oils has increased, plant metabolic engineering to produce triacylglycerols in biomass such as leaves has been considered and explored for alternative source of vegetable oils. Leaves are genetically programmed to supply the fixed carbon by photosynthesis to other organs for plant development and growth. Therefore, in order to produce and accumulate triacylglycerols in leaves, one should take account of multiple metabolic pathways such as carbon flux, competition of carbohydrate and fatty acid biosynthesis, and triacylglycerols turnover in leaves. The recent metabolic engineering strategy has showed potential in which the co-expression of three genes WRINKLED1, DGAT1, and OLEOSIN involved in the critical step for increasing the fatty acid synthesis, accumulating triacylglycerols, and protecting triacylglycerols, respectively produced higher amount of vegetable oils in leaves. Developing of genetically engineered plants producing vegetable oil in biomass at non-agricultural lands will be promising to the future success of the field.