• Title/Summary/Keyword: Asymmetric ratio

Search Result 315, Processing Time 0.025 seconds

Ussing's flux ratio theorem for nonlinear diffusive transport with chemical interactions

  • Bracken, A.J.;McNabb, A.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.747-752
    • /
    • 1994
  • Ussing's flux ratio theorem (1978) reflects a reciprocal relationship behavior between the unidirectional fluxes in asymmetric steady diffusion-convection in a membrane slab. This surprising result has led to many subsequent studies in a wide range of applications, in particular involving linear models of time dependent problems in biology and physiology. Ussing's theorem and its extensions are inherently linear in character. It is of considerable interest to ask to what extent these results apply, if at all, in situations involving, for example, nonlinear reaction. A physiologically interesting situation has been considered by Weisiger et at. (1989, 1991, 1992) and by McNabb et al. (1990, 1991) who studied the role of albumin in the transport of ligands across aqueous diffusion barriers in a liver membrane slab. The results are that there exist reciprocal relationships between unidirectional fluxes in the steady state, although albumin is chemically interacting in a nonlinear way of the diffusion processes. However, the results do not hold in general at early times. Since this type of study first started, it has been speculated about when and how the Ussing's flux ratio theorem fails in a general diffusion-convection-reaction system. In this paper we discuss the validity of Ussing-type theorems in time-dependent situations, and consider the limiting time behavior of a general nonlinear diffusion system with interaction.

  • PDF

A study on the wake characteristics of rim-driven propeller for underwater robot using the PIV (PIV를 이용한 수중로봇용 림 추진기 후류 특성에 관한 연구)

  • LEE, Chang-Je;HEO, Min-Ah;CHO, Gyeong-Rae;KIM, Hyoung-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.68-74
    • /
    • 2022
  • This study analyzed the wake characteristics of the rim-driven propeller (RDP) used in an underwater robot. For underwater robots to perform specific missions, not only propulsion characteristics but also wake characteristics must be considered. In this study, a blade was designed based on NAC 0012 with a symmetrical cross-section. The RDP was hubless with three or four blades. The influence of both the free water surface and the bottom was considered, and the wake was measured using a particle image velocimetry in the advance ratio of 0.2 to 1. Model 1 showed symmetrical wakes in the entire advance ratio section. Model 2 showed asymmetric wakes due to the influence of the free water surface and the bottom at low advance ratio.

HI superprofiles of galaxies from THINGS and LITTLE THINGS

  • Kim, Minsu;Oh, Se-Heon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.68.3-69
    • /
    • 2021
  • We present a novel profile stacking technique based on optimal profile decomposition of a 3D spectral line data cube, and its performance test using the HI data cubes of sample galaxies from HI galaxy surveys, THINGS and LITTLE THINGS. Compared to the previous approach which aligns all the spectra of a cube using their central velocities derived from either moment analysis, single Gaussian or hermite h3 polynomial fitting, the new method makes a profile decomposition of the profiles from which an optimal number of single Gaussian components is derived for each profile. The so-called superprofile which is derived by co-adding all the aligned profiles from which the other Gaussian models are subtracted is found to have weaker wings compared to the ones constructed in a typical manner. This could be due to the reduced number of asymmetric profiles in the new method. A practical test made on the HI data cubes of the THINGS and LITTLE THINGS galaxies shows that our new method can extract more mass of kinematically cold HI components in the galaxies than the previous results. Additionally, we fit a double Gaussian model to the superprofiles whose S/N is boosted, and quantify not only their profile shapes but derive the ratio of the Gaussian model parameters, such as the intensity ratio and velocity dispersion ratio of the narrower and broader Gaussian components. We discuss how the superprofile properties of the sample galaxies are correlated with their other physical properties, including star formation rate, stellar mass, metallicity, and gas mass.

  • PDF

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors (하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동)

  • Shin, Seung-Il;Lee, Byung-Gwan;Ha, Min-Woo;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.774-780
    • /
    • 2019
  • The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.

Comparison of Both Legs EMG Symmetry during Over-Ground Walking and Stair Walking in Stroke Patients

  • Jeong, Mu-Geun;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.228-233
    • /
    • 2015
  • Purpose: Gait is the most basic element when evaluating the quality of life with activities of daily living under ordinary life circumstances. Symmetrical use of the lower extremities requires complicated coordination of all limbs. Thus, this study examined asymmetry of muscle activity quadriceps femoris and tibialis anterior as a baseline for training during over-ground walking and stair walking of stroke patients. Methods: Subjects were 14 stroke patients included as one experimental group. Gait speed used in this study was determined by the subject. Low extremity paretic and non-paretic EMG was compared using the surface EMG system. Results: The low extremity EMG difference was statistically significant during over-ground walking and stair walking (p<0.05). The result of low extremity EMG substituted symmetry ratio formula was compared to EMG symmetry ratio in both legs during over-ground walking and stair walking. The average symmetry ratio of quadriceps femoris during over-ground walking was 0.65, and average symmetry ratio of quadriceps femoris during stair walking was 0.47, with significant difference (p<0.05). Conclusion: EMG data was higher in stair walking than over-ground walking. However, in the comparison of symmetry ratio, asymmetric EMG of quadriceps femoris was significantly increased during stair walking. These findings suggested that application of stair walking for strengthening of both legs can be positive, but the key factor is maintaining asymmetrical posture of both legs. Therefore, physical therapists should make an effort to reduce asymmetry of quadriceps femoris power during stair walking by stroke patients.

Characteristics of Sand-Rubber mixtures with Strain Level (모래-고무 혼합재의 변형율 크기에 따른 거동 특성)

  • Lee, Chang-Ho;Truong, Q. Hung;Eom, Yong-Hun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.90-96
    • /
    • 2008
  • Engineered mixtures composed of rigid sand particles and soft rubber particles are tested to investigate their behavior with strain level. Mixtures are prepared with different volumetric sand fractions (sf) to identify response using small strain resonant column, intermediate strain oedometer, and large strain direct shear tests. The small strain shear modulus and damping ratio are determined with volumetric sand fractions. The asymmetric frequency response curve increases with decreasing sand fraction. Linear responses of shear strain and damping ratio with shear strain are observed at the mixture of sf=0.2. Vertical strain increases with decreasing sand fraction. Mixtures with $04.{\leq}sf{\leq}0.6$ show the transitional stress-deformation behavior from rubber-like to sand-like behavior. The friction angle increases with the sand fraction and no apparent peak strength is observed in mixture without sf=1.0.

  • PDF

Design of the Multisection Impedance Transforming Branch-Line Hybrid Using the Genetic Algorithm (유전자 앨거리즘을 이용한 임피던스 변환 브랜치라인 하이브리드 설계)

  • 이경우;이상설
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.388-388
    • /
    • 2000
  • A design method for a multisection impedance transforming branch-line hybrid using a genetic algorithm suitable for MMIC applications is proposed. In contrast to the previous design methods, an asymmetric structure is introduced to optimize the hybrid. Optimization is performed within the impedance range to achieve the realizable hybrids with a microstrip line in a desired frequency range. This design method is applicable to the hybrid which has the arbitrary power division ratio, impedance transforming ratio, isolation, directivity and bandwidth. The hybrid designed by the proposed method has 3∼10% more bandwidth than the previous results.

Design of the Multisection Impedance Transforming Branch-Line Hybrid Using the Genetic Algorithm (유전자 앨거리즘을 이용한 임피던스 변환 브랜치라인 하이브리드 설계)

  • Lee, Gyeong-U;Lee, Sang-Seol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.28-35
    • /
    • 2000
  • A design method for a multisection impedance transforming branch-line hybrid using a genetic algorithm suitable for MMIC applications is proposed. In contrast to the previous design methods, an asymmetric structure is introduced to optimize the hybrid. Optimization is performed within the impedance range to achieve the realizable hybrids with a microstrip line in a desired frequency range. This design method is applicable to the hybrid which has the arbitrary power division ratio, impedance transforming ratio, isolation, directivity and bandwidth. The hybrid designed by the proposed method has 3∼10% more bandwidth than the previous results.

  • PDF

A Study on the Aileron Reversal Characteristics of CAS Composite Aircraft Wings (CAS 복합재료 항공기 날개의 에일러론 역전 특성 연구)

  • Song, Oh-Seop;Kim, Keun-Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1192-1200
    • /
    • 2009
  • This paper deals with an analytical study on the aileron reversal characteristics of anisotropic composite aircraft wings modelled as thin-walled beam and having bending-torsion structural couplings caused by Circumferentially Asymmetric Stiffness layup scheme. For a study on the aileron reversal of CAS composite wings, it is essential to consider the following effects such as warping restraint, transverse shear flexibility, bending-twist structural coupling, wing aspect ratio, ratio of span-wise and chord-wise length of aileron to wing, and sweep angle, etc. The results on the aileron reversal could have a significant role in more efficient designs of thin-walled composite wing aircraft for which this aeroelastic instability is one of the most critical ones.