• Title/Summary/Keyword: Asymmetric Effect

Search Result 606, Processing Time 0.028 seconds

Asymmetric Effect of Social Sentimental on an Individual Stock Price Return (소셜 감성이 개별 기업 주식수익률에 미치는 비대칭적 영향 분석)

  • Sei-Wan Kim;Jee-Won Park;Young-Min Kim;Hee Kyung Ham
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.59-74
    • /
    • 2020
  • This paper investigates the asymmetric effect of social sentimental on an individual stock price return. For this purpose, four companies such as POSCO, Korean Electricity, AMORE PACIFIC, KIA Motors are chosen from KOSPI listed companies in terms of dataperspective. The main estimation results are as follows: the positive opinions affect only the stock prices return of three companies while the negative opinions affect all of the companies. It shows that positive or negative texts give asymmetric effect on stock price return and the effect of negative opinions is bigger than that of positive opinions. The results imply that investors are more sensitive to the negatives since they have the tendency of loss aversion. Also, it indicates that subjective opinion on SNS can be used as the proxy for the investment sentiment.

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.

Variation of Asymmetric Hysteresis Loops with Chemical Composition of Amorphous Ferromagnetic Alloys (비정질 자성 합금의 조성에 따른 비대칭 자기 이력 곡선의 변화)

  • 신경호;민성혜;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.261-268
    • /
    • 1995
  • In order to investigate the origin of the asymmetric magnetization reversal effect, we studied the variation of magnetic hysteresis loops with the alloy composition in amorphous ferromagnetic alloy ribbons of ${(Fe_{1-x}Co_{x})}_{75}Si_{10}B_{15}$ system annealed at $380^{\circ}C$ for 16 hours in a zero field condition. The asymmetric magnetization reversal effect developed more strongly in amorphous ribbons having two metallic components than in ribbons having a single metallic component. The effect developed more strongly in ribbons showing a smaller value of the saturation mag¬netostriction. The development of the asymmetric magnetization reversal effect was affected by the ratio of two metallic components as well as the magnitude of the saturation magnetostriction.

  • PDF

Empirical Analyses of Asymmetric Conditional Heteroscedasticities for the KOSPI and Korean Won-US Dollar Exchange Rate (KOSPI지수와 원-달러 환율의 변동성의 비대칭성에 대한 실증연구)

  • Maeng, Hye-Young;Shin, Dong-Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1033-1043
    • /
    • 2011
  • In this paper, we use a nested family of models of Generalized Autoregressive Conditional Heteroscedasticity(GARCH) to verify asymmetric conditional heteroscedasticity in the KOSPI and Won-Dollar exchange rate. This study starts from an investigation of whether time series data have asymmetric features not explained by standard GARCH models. First, we use kernel density plot to show the non-normality and asymmetry in data as well as to capture asymmetric conditional heteroscedasticity. Later, we use three representative asymmetric heteroscedastic models, EGARCH(Exponential Garch), GJR-GARCH(Glosten, Jagannathan and Runkle), APARCH(Asymmetric Power Arch) that are improved from standard GARCH models to give a better explanation of asymmetry. Thereby we highlight the fact that volatility tends to respond asymmetrically according to positive and/or negative values of past changes referred to as the leverage effect. Furthermore, it is verified that how the direction of asymmetry is different depending on characteristics of time series data. For the KOSPI and Korean won-US dollar exchange rate, asymmetric heteroscedastic model analysis successfully reveal the leverage effect. We obtained predictive values of conditional volatility and its prediction standard errors by using moving block bootstrap.

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

The flow of $CO_{2}$ and $N_{2}$ gases through Asymmetric polytherimide Membrane

  • Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.73-85
    • /
    • 1995
  • The asymmetric hollow fiber membranes were prepared by the wet spining of polyetherimide dope solution and the effect of hollow fiber structures on the permeation characteristics of carbon dioxide and nitrogen gases through these membrane were investigated. As the concentration of the $\gamma$-butyrolactone (GBL) in dope solution, acting as a swelling agent was increased, the structure of hollow fiber was changed from the finger to sponge type. The permeabilities of gases (CO$_{2}$, N$_{2}$) through these membrane were measured over the wide range of pressure under different temperature. The effect of water vapor on the permeabilities of gases was also investigated. The measured permeabilities showed the different characteristics depending on the structure of membranes. It was found that the flow through the pores were dominant over the polymers matrix. Blocking effect by water vapor in the pores of skin layer greatly improved the ideal separation factor of carbon dioxide/nitrogen.

  • PDF

A Study on Asymmetric Pulsed DC Plasma Power Supply with Energy Recovery Circuit (에너지 반환회로를 갖는 비대칭 펄스형 DC 플라즈마 전원장치에 관한 연구)

  • Choo, Dae-Hyeok;Yoo, Sung-Hwan;Kim, Joohn-Sheok;Han, Ki-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.593-600
    • /
    • 2013
  • The asymmetric pulsed DC reactive magnetron sputtering system is widely used for the high quality plasma sputtering process such as a thin film deposition. In asymmetric pulsed DC power supply a reverse voltage is applied to the target periodically to minimize arc discharging effect. When sputtering in the mid-frequency range (20-350 kHz), the periodic target voltage reversals suppress arc formation at the target and provide long-term process stability. Thus, high quality, defect-free coatings of these materials can now be deposited at competitive rates. In this paper, a new style asymmetric pulsed DC power supply including mid-transformer is presented. In the proposed, an energy recovery circuit is adopted to reduce the mutual inductance of the transformer. As a result, the system dynamics of the voltage control loop is increased highly and the non-linear voltage boosting effect of the conventional system is removed. This work was proved through simulation and laboratory based experimental study.

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

Numerical Study on the Aerodynamic Performance of Asymmetric Vertical Folding Rotor Sail (비대칭 수직 접이식 로터세일의 성능 평가에 관한 수치해석 연구)

  • Jung Yoon Park;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.68-76
    • /
    • 2024
  • The rotor sail is one of the representative devices in eco-friendly wind-assisted propulsion systems that have been practically applied to commercial ships. The present study proposes an asymmetric vertical folding rotor sail (AFRS) designed for small ships, featuring asymmetric geometry along the vertical direction and the function of vertical folding. To evaluate the aerodynamic performance of rotor sail, the drag, lift and lift-to-drag ratio were derived using computational fluid dynamics. The aerodynamic performance of AFRS was compared with that of normal rotor sail with different aspect ratios and spin ratios. The effect of geometric parameters on the aerodynamic performance of AFRS was assessed by varying the asymmetric diameter ratio. The maximum improvement in lift-to-drag ratio for AFRS was approximately 12% in the considered case. Additionally, the resistance is decreased when AFRS is vertically folded without rotating. Throughout the present study, improved aerodynamic and resistance performances for AFRS were confirmed, which will successfully provide additional propulsion to small ships.